Photoreduction of copper chromophores in blue oxidases. 1978

Y Henry, and J Peisach

The low temperature (77 K) irradiation of oxidized ceruloplasmin and Rhus vernicifera laccase at the 330 nm absorption which arises from type 3 copper leads to the reduction of type 1 copper as demonstrated by bleaching of the 610 nm chromophore and the decrease of the EPR signal associated with this species. Type 2 copper remains unaffected. Concomitant with the type 1 copper reduction, a new EPR signal which is possibly that of a biradical appears. Upon thawing, type 1 copper is reversibly oxidized and the radical signal disappears. Irradiation of oxidized protein at the absorption band of type 1 copper produces no spectral change. An EPR study at room temperature confirms the wave-length specificity and reversibility of the photoreduction of type 1 copper and radical formation. Radical appearance and disappearance at room temperature are extremely slow (tau1/2 approximately 30 min). Optical studies at room temperature show that upon anaerobic irradiation of laccase in the 330 nm absorption band, both type 3 and type 1 chromophores are slowly reduced. Upon return to the dark and in the presence of O2, both type 3 and type 1 centers are reoxidized. Oxidizing equivalents either from O2 or K3Fe(CN)6 are required for the reoxidation reaction. These studies demonstrate that there is a direct energy transfer between type 3 and type 1 copper sites in blue copper oxidases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D002570 Ceruloplasmin A multi-copper blood FERROXIDASE involved in iron and copper homeostasis and inflammation. Caeruloplasmin,Ferroxidase,Ceruloplasmin Ferroxidase,Ceruloplasmin Oxidase,Ferroxidase I,alpha(2)-Ceruloplasmin,Ferroxidase, Ceruloplasmin,Oxidase, Ceruloplasmin
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005615 Freezing Liquids transforming into solids by the removal of heat. Melting
D012251 Toxicodendron A genus (formerly part of Rhus genus) of shrubs, vines, or trees that yields a highly allergenic oleoresin which causes a severe contact dermatitis (DERMATITIS, TOXICODENDRON). The most toxic species are Toxicodendron vernix (poison sumac), T. diversilobum (poison oak), and T. radicans (poison ivy). T. vernicifera yields a useful varnish from which certain enzymes (laccases) are obtained. Ivy, Poison,Oak, Poison,Poison Ivy,Poison Oak,Poison Sumac,Sumac, Poison,Rhus toxicodendron,Ivies, Poison,Oaks, Poison,Poison Ivies,Poison Oaks,Poison Sumacs,Rhus toxicodendrons,Sumacs, Poison,Toxicodendrons,toxicodendron, Rhus
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

Y Henry, and J Peisach
May 1981, European journal of biochemistry,
Y Henry, and J Peisach
October 1983, Journal of inorganic biochemistry,
Y Henry, and J Peisach
December 2006, Biochimica et biophysica acta,
Y Henry, and J Peisach
January 2018, Methods in enzymology,
Y Henry, and J Peisach
January 1993, Journal of molecular evolution,
Y Henry, and J Peisach
October 1978, Biophysical journal,
Y Henry, and J Peisach
March 1991, Nature,
Y Henry, and J Peisach
June 2024, National science review,
Copied contents to your clipboard!