GABA-ergic pathways in the goldfish retina. 1978

R E Marc, and W K Stell, and D Bok, and D M Lam

A high-affinity uptake mechanism for [3H]-gamma-aminobutyric acid (GABA) has been localized to type H1 cone horizontal cells and type Ab pyriform amacrine cells in the retina of the goldfish by light and electron microscopy autoradiography. By stimulating isolated retinas with colored lights during incubation we have been able to use [3H]-GABA uptake as a probe of light-evoked changes in membrane potential. All colors of lights increase and darkness decreases [3H]-GABA uptake by H1 cone horizontal cells. Our model of voltage dependence of GABA uptake predicts that all colors of light should hyperpolarize H1 cone horizontal cells and other investigators have shown by intracellular recording and dye-marking that type H1 cone horizontal cells hyperpolarize to all wavelengths of light. We have also obtained evidence that dark-induced depolarization of cone horizontal cells leads to release of GABA. Type Ab pyriform amacrine cells show maximal [3H]-GABA uptake in darkness and when exposed to green or blue lights, but red lights dramatically suppress uptake. We predict these neurons to be red-depolarizing, and recent intracellular recordings and dye-marking by Famiglietti et al. ('77) support our conclusions. Synaptic relations of apparently GABA-ergic neurons were investigated in the electron microscope. We propose type H1 cone horizontal cells to be both pre- and post-synaptic to red-sensitive cones and type Ab pyriform amacrine cells to be both pre- and post-synaptic to red-sensitive center-depolarizing bipolar cells.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R E Marc, and W K Stell, and D Bok, and D M Lam
January 1990, The Journal of comparative neurology,
R E Marc, and W K Stell, and D Bok, and D M Lam
February 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R E Marc, and W K Stell, and D Bok, and D M Lam
September 1980, The Journal of comparative neurology,
R E Marc, and W K Stell, and D Bok, and D M Lam
September 2003, Vision research,
R E Marc, and W K Stell, and D Bok, and D M Lam
October 2000, Journal of neurophysiology,
R E Marc, and W K Stell, and D Bok, and D M Lam
December 1985, Brain research,
R E Marc, and W K Stell, and D Bok, and D M Lam
January 1985, Brain research,
R E Marc, and W K Stell, and D Bok, and D M Lam
January 1998, Visual neuroscience,
R E Marc, and W K Stell, and D Bok, and D M Lam
September 2014, The American journal of psychiatry,
R E Marc, and W K Stell, and D Bok, and D M Lam
January 1992, Polish journal of pharmacology and pharmacy,
Copied contents to your clipboard!