Slow light and dark adaptation of horizontal cells in the Xenopus retina: a role for endogenous dopamine. 1990

P Witkovsky, and X P Shi
Daniel B. Kirby Eye Institute, Department of Ophthalmology, New York University Medical Center, NY 10016.

A role for endogenous dopamine in the control of rod and cone contributions to a second-order retinal neuron, the horizontal cell (HC) was studied in the Xenopus retina. Relative rod and cone contributions were estimated from HC responses to scotopically balanced 491- and 650-nm flashes. In eyecups prepared in light then placed in darkness, cone input to the HC slowed and diminished on a time scale of hours. The decline in cone input was balanced by a slow growth of rod input to the HC. Administration of D-amphetamine, a dopamine releasing agent, restored the light-adapted waveform. The kinetics of slow light adaptation were examined by recording HC responses from eyecups that had been dark-adapted previously for 11-14 h. When test flashes fell on a dark field, cone input to the HC grew for 2-4 h, reached a plateau, and later declined. If, however, flashes were superimposed on a weak background field, cone input to the HC continued to increase monotonically at about 10%/h. This increase was abolished by superfusion with a nonspecific dopamine receptor blocker, cis-flupenthixol (50 microM), resulting in the complete suppression of cone-to-horizontal cell synaptic transfer and the enhancement of rod-to-horizontal cell communication. Subcutaneous injection of reserpine, a drug that depletes dopamine stores (2 mg/kg on 1-4 successive days), or intraocular injection of the dopamine neurotoxin, 6-hydroxydopamine (10-30 micrograms) slowed and reduced the amplitude of cone input to the HC, even in completely light-adapted eyes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

P Witkovsky, and X P Shi
May 1991, Science in China. Series B, Chemistry, life sciences & earth sciences,
P Witkovsky, and X P Shi
January 1969, UCLA forum in medical sciences,
P Witkovsky, and X P Shi
January 2003, Visual neuroscience,
P Witkovsky, and X P Shi
July 1967, Nature,
P Witkovsky, and X P Shi
March 1999, The Journal of comparative neurology,
P Witkovsky, and X P Shi
October 1968, Experimental cell research,
Copied contents to your clipboard!