Circular dichroism studies of the HIV-1 Rev protein and its specific RNA binding site. 1990

T J Daly, and J R Rusche, and T E Maione, and A D Frankel
Repligen Corporation, Cambridge, Massachusetts 02139.

The circular dichroism (CD) spectrum of the Rev protein from HIV-1 indicates that Rev contains about 50% alpha helix and 25% beta sheet at 5 degrees C in potassium phosphate buffer, pH 3, and 300 mM KF. The spectrum is independent of protein concentration over a 20-fold range. At neutral pH, Rev is relatively insoluble but can be brought into solution by binding to its specific RNA binding site, the Rev-responsive element (RRE), at a Rev:RNA ratio of about 3:1. Nonspecific binding to tRNA does not solubilize Rev. As judged by difference CD spectra, the conformation of Rev when bound to the RRE at neutral pH is similar to the conformation of unbound Rev at pH 3, although changes in the RNA may also contribute to the difference spectrum. Indeed, some difference is observed near 260 nm, consistent with a conformational change of the RRE upon Rev binding. Rev alone at pH 3 shows irreversible aggregation as the temperature is raised, while Rev bound to the RRE at neutral pH shows a reversible transition with a Tm of 68 degrees C.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

T J Daly, and J R Rusche, and T E Maione, and A D Frankel
December 1989, Nature,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
January 2011, Methods in molecular biology (Clifton, N.J.),
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
December 1989, AIDS (London, England),
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
January 1991, Biochimie,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
September 1993, Cell,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
October 1992, Biochemistry,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
May 1977, Journal of biochemistry,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
December 1996, Journal of molecular biology,
T J Daly, and J R Rusche, and T E Maione, and A D Frankel
December 1992, Nucleic acids research,
Copied contents to your clipboard!