Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. 1990

H Bedouelle
Unité de Biochimie Cellulaire (CNRS URA D1129), Institut Pasteur, Paris, France.

In this review, I have brought together and compared the available data on the interaction between tRNA(Tyr) and tyrosyl-tRNA synthetases (TyrTS) of prokaryotic origins. The amino acid sequences of the heterologous TyrTS that can charge Escherichia coli tRNA(Tyr), show that the residues involved in the binding and recognition of tyrosine are strictly conserved whereas those involved in the interaction with tRNA(Tyr) are only weakly similar. The results of in vivo genetic complementation experiments indicate that the identity elements of tRNAs and the recognition mechanisms of such elements by the synthetases have been conserved during evolution. Heterologous or mutant tRNA(Tyr) are quantitatively charged by E coli TyrTS; the set of their common residues contains less than 10 elements if one excludes the invariant and semi-invariant residues of tRNAs. The residues of this set are candidates for a specific recognition by TyrTS. So far, adenosine-73 is the only residue for which a specific recognition of the base has been demonstrated. The residues that might serve as identity elements for E coli tRNA(Tyr) [McClain WH, Nicholas Jr HB (1987) J Mol Biol 194, 635-642] do not belong to the above set of conserved residues and therefore probably play negative roles, enabling tRNA(Tyr) to avoid non-cognate synthetases. Comparison of the charging and stability properties of mutant tRNA(Tyr) su +3 shows that bases 1 and 72 must pair (either by Watson-Crick or non-canonical hydrogen bonds) and adopt a geometry which is compatible with the helical structure of the acceptor stem in order for the mutant tRNA(Tyr) to be charged with tyrosine. If bases 1 and 72 or bases 2 and 71 cannot form such pairings, the suppressor phenotype of the mutant tRNA(Tyr)su +3 becomes thermosensitive. The weakening of base pair 1/72 by mutation or the change of adenosine-73 into guanosine results in the charging of tRNA(Tyr)su +3 with glutamine. Comparison of the structural model of the TyrTS/tRNA(Tyr) complex with the crystallographic structure of the GlnTS/tRNA(Gln) complex indicates that the mechanisms for the recognition of the acceptor arm are different in the 2 cases. Chemical attack and molecular modeling experiments have indicated that the acceptor end of tRNA(Tyr) ... CCCA3'-OH, remains mobile after the initial binding of tRNA(Tyr) to TyrTS.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005975 Glutamate-tRNA Ligase An enzyme that activates glutamic acid with its specific transfer RNA. EC 6.1.1.17. Glutamyl T RNA Synthetase,Glu-tRNA Ligase,Glutamyl-tRNA Synthetase,Glu tRNA Ligase,Glutamate tRNA Ligase,Glutamyl tRNA Synthetase,Ligase, Glu-tRNA,Ligase, Glutamate-tRNA,Synthetase, Glutamyl-tRNA
D001411 Geobacillus stearothermophilus A species of GRAM-POSITIVE ENDOSPORE-FORMING BACTERIA in the family BACILLACEAE, found in soil, hot springs, Arctic waters, ocean sediments, and spoiled food products. Bacillus stearothermophilus,Bacillus thermoliquefaciens
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012351 RNA, Transfer, Gln A transfer RNA which is specific for carrying glutamine to sites on the ribosomes in preparation for protein synthesis. Glutamine-Specific tRNA,Transfer RNA, Gln,tRNAGln,tRNA(Gln),Gln Transfer RNA,Glutamine Specific tRNA,RNA, Gln Transfer,tRNA, Glutamine-Specific
D012365 RNA, Transfer, Tyr A transfer RNA which is specific for carrying tyrosine to sites on the ribosomes in preparation for protein synthesis. Transfer RNA, Tyr,Tyrosine-Specific tRNA,tRNATyr,tRNA(Tyr),RNA, Tyr Transfer,Tyr Transfer RNA,Tyrosine Specific tRNA,tRNA, Tyrosine-Specific
D014448 Tyrosine-tRNA Ligase An enzyme that activates tyrosine with its specific transfer RNA. EC 6.1.1.1. Tyrosyl T RNA Synthetase,Tyr-tRNA Ligase,Tyrosyl-tRNA Synthetase,Ligase, Tyr-tRNA,Ligase, Tyrosine-tRNA,Synthetase, Tyrosyl-tRNA,Tyr tRNA Ligase,Tyrosine tRNA Ligase,Tyrosyl tRNA Synthetase

Related Publications

H Bedouelle
March 2002, Proceedings of the National Academy of Sciences of the United States of America,
H Bedouelle
April 2002, The Journal of biological chemistry,
Copied contents to your clipboard!