Biodistribution of ascorbyl palmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice. 2011

Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
Nanotechnology and Drug Targeting Laboratory, University College of Pharmaceutical Sciences, Kakatiya University, Warangal 506 009, Andhra Pradesh, India. jukantiraj@gmail.com

The aim of this study is to develop ascorbyl palmitate (ASP) loaded doxorubicin (DOX) pegylated liposomes and to evaluate their targeting potential to tumor. We have prepared conventional (DL), pegylated DOX liposomes with (SDL) and without ascorbyl palmitate (SDL-A). The vesicle size in all the formulations was within the range 105-120 nm and in vitro release studies in serum confirmed the stability of the liposomes. Biodistribution studies carried out in Ehrlich ascites tumor bearing mice indicate higher area under the curve for SDL and SDL-A liposomes compared to DL and plain drug solution. Drug targeting index assessed from tumor-to-serum concentration ratio and therapeutic availability of DOX in tumor tissue was also significantly higher for pegylated liposomes. In conclusion, biodistribution study reveals that the presence of ascorbyl palmitate alters the distribution pattern of liposomes and paves way for better drug targeting.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002286 Carcinoma, Ehrlich Tumor A transplantable, poorly differentiated malignant tumor which appeared originally as a spontaneous breast carcinoma in a mouse. It grows in both solid and ascitic forms. Ehrlich Ascites Tumor,Ascites Tumor, Ehrlich,Ehrlich Tumor Carcinoma,Tumor, Ehrlich Ascites
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
April 2005, International journal of pharmaceutics,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
February 2019, International journal of biological macromolecules,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
January 1988, Journal of cancer research and clinical oncology,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
April 2022, Polymers,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
October 2016, Colloids and surfaces. B, Biointerfaces,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
January 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
March 2024, Journal of liposome research,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
July 2005, Journal of controlled release : official journal of the Controlled Release Society,
Raju Jukanti, and Gopinath Devraj, and Apte S Shashank, and Rambhau Devraj
December 2017, International journal of pharmaceutics,
Copied contents to your clipboard!