Pro-opiomelanocortin messenger RNA in hypothalamic neurons is increased by testosterone through aromatization to estradiol. 1990

J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
Department of Physiology and Biophysics, University of Washington, Seattle.

We have previously demonstrated that neurons in the rostral arcuate nucleus expressing the messenger RNA (mRNA) for pro-opiomelanocortin (POMC) are responsive to modulation by physiological levels of testosterone. It is uncertain, however, whether testosterone's action is mediated through direct activation of androgen receptors or through aromatization to estradiol and subsequent binding to estrogen receptors. We examined this question by evaluating the effectiveness of estradiol and dihydrotestosterone (DHT), a nonaromatizable androgen, in reversing the castration-induced diminution of POMC mRNA in the arcuate nucleus. Using in situ hybridization, we measured POMC mRNA content within arcuate neurons of intact, castrated, castrated testosterone-replaced, castrated estradiol-replaced, and castrated DHT-replaced male rats. Adult male rats were castrated and implanted (s.c.) with a Silastic capsule filled to one of the following specifications: crystalline testosterone (30 mm; n = 4); 17 beta-estradiol (E2) diluted 1:1 with cholesterol (5 mm; n = 4); DHT (40 mm; n = 4); or empty (30 mm; n = 4). Control, sham-operated animals (n = 4) were left intact. Analysis of the results showed that following castration, POMC mRNA content was significantly reduced in cells of the arcuate nucleus (intact: 152 +/- 3 grains/cell vs. castrate: 110 +/- 3 grains/cell). Replacement with physiological levels of testosterone prevented the decline of POMC mRNA levels (castrated testosterone-replaced: 143 +/- 6 grains/cell), as did replacement with physiological levels of estrogen (castrated estrogen-replaced: 149 +/- 8 grains/cell). Treatment with DHT failed to prevent the postcastration decline in POMC mRNA content (castrated DHT-treated: 118 +/- 4 grains/cell).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001111 Arcuate Nucleus of Hypothalamus A nucleus located in the middle hypothalamus in the most ventral part of the THIRD VENTRICLE near the entrance of the infundibular recess. Its small cells are in close contact with the EPENDYMA. Arcuate Nucleus,Infundibular Nucleus,Hypothalamus Arcuate Nucleus,Nucleus, Arcuate,Nucleus, Infundibular
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19

Related Publications

J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
February 2018, Aging cell,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
May 2017, Molecular metabolism,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
December 1993, Neuroendocrinology,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
June 2008, Neuroscience,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
July 1998, Neuroscience letters,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
March 2010, The Journal of biological chemistry,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
June 1993, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
May 2023, iScience,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
July 1989, Fertility and sterility,
J A Chowen, and J Argente, and L Vician, and D K Clifton, and R A Steiner
January 1999, Neuroscience,
Copied contents to your clipboard!