Acid beta-glucosidase: enzymology and molecular biology of Gaucher disease. 1990

G A Grabowski, and S Gatt, and M Horowitz
Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029.

Human lysosomal beta-glucosidase (D-glucosyl-acylsphingosine glucohydrolase, EC 3.2.1.45) is a membrane-associated enzyme that cleaves the beta-glucosidic linkage of glucosylceramide (glucocerebroside), its natural substrate, as well as synthetic beta-glucosides. Experiments with cultured cells suggest that in vivo this glycoprotein requires interaction with negatively charged lipids and a small acidic protein, SAP-2, for optimal glucosylceramide hydrolytic rates. In vitro, detergents (Triton X-100 or bile acids) or negatively charged ganglioside or phospholipids and one of several "activator proteins" increase hydrolytic rate of lipid and water-soluble substrates. Using such in vitro assay systems and active site-directed covalent inhibitors, kinetic and structural properties of the active site have been elucidated. The defective activity of this enzyme leads to the variants of Gaucher disease, the most prevalent lysosomal storage disease. The nonneuronopathic (type 1) and neuronopathic (types 2 and 3) variants of this inherited (autosomal recessive) disease but panethnic, but type 1 is most prevalent in the Ashkenazi Jewish population. Several missense mutations, identified in the structural gene for lysosomal beta-glucosidase from Gaucher disease patients, are presumably casual to the specifically altered posttranslational oligosaccharide processing or stability of the enzyme as well as the altered in vitro kinetic properties of the residual enzyme from patient tissues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D005776 Gaucher Disease An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement. Cerebroside Lipidosis Syndrome,Gaucher Disease Type 1,Gaucher Disease Type 2,Glucocerebrosidase Deficiency Disease,Glucosylceramide Beta-Glucosidase Deficiency Disease,Neuronopathic Gaucher Disease,Acid beta-Glucosidase Deficiency,Acid beta-Glucosidase Deficiency Disease,Acute Neuronopathic Gaucher Disease,Chronic Gaucher Disease,GBA Deficiency,Gaucher Disease Type 3,Gaucher Disease, Acute Neuronopathic,Gaucher Disease, Acute Neuronopathic Type,Gaucher Disease, Chronic,Gaucher Disease, Chronic Neuronopathic Type,Gaucher Disease, Infantile,Gaucher Disease, Infantile Cerebral,Gaucher Disease, Juvenile,Gaucher Disease, Juvenile and Adult, Cerebral,Gaucher Disease, Neuronopathic,Gaucher Disease, Non-Neuronopathic Form,Gaucher Disease, Noncerebral Juvenile,Gaucher Disease, Subacute Neuronopathic Form,Gaucher Disease, Subacute Neuronopathic Type,Gaucher Disease, Type 1,Gaucher Disease, Type 2,Gaucher Disease, Type 3,Gaucher Disease, Type I,Gaucher Disease, Type II,Gaucher Disease, Type III,Gaucher Splenomegaly,Gaucher Syndrome,Gaucher's Disease,Gauchers Disease,Glucocerebrosidase Deficiency,Glucocerebrosidosis,Glucosyl Cerebroside Lipidosis,Glucosylceramidase Deficiency,Glucosylceramide Beta-Glucosidase Deficiency,Glucosylceramide Lipidosis,Infantile Gaucher Disease,Kerasin Histiocytosis,Kerasin Lipoidosis,Kerasin thesaurismosis,Lipoid Histiocytosis (Kerasin Type),Non-Neuronopathic Gaucher Disease,Subacute Neuronopathic Gaucher Disease,Type 1 Gaucher Disease,Type 2 Gaucher Disease,Type 3 Gaucher Disease,Cerebroside Lipidoses, Glucosyl,Cerebroside Lipidosis Syndromes,Cerebroside Lipidosis, Glucosyl,Deficiencies, GBA,Deficiencies, Glucocerebrosidase,Deficiency Disease, Glucocerebrosidase,Deficiency Diseases, Glucocerebrosidase,Deficiency, GBA,Deficiency, Glucocerebrosidase,Disease, Chronic Gaucher,Disease, Gaucher,Disease, Gaucher's,Disease, Gauchers,Disease, Glucocerebrosidase Deficiency,Disease, Infantile Gaucher,Disease, Juvenile Gaucher,Disease, Neuronopathic Gaucher,Disease, Non-Neuronopathic Gaucher,Diseases, Gauchers,Diseases, Glucocerebrosidase Deficiency,GBA Deficiencies,Gaucher Disease, Non Neuronopathic Form,Gaucher Disease, Non-Neuronopathic,Gauchers Diseases,Glucocerebrosidase Deficiencies,Glucocerebrosidase Deficiency Diseases,Glucocerebrosidoses,Glucosyl Cerebroside Lipidoses,Glucosylceramide Lipidoses,Histiocytoses, Kerasin,Histiocytoses, Lipoid (Kerasin Type),Histiocytosis, Kerasin,Histiocytosis, Lipoid (Kerasin Type),Juvenile Gaucher Disease,Kerasin Histiocytoses,Kerasin Lipoidoses,Kerasin thesaurismoses,Lipidoses, Glucosyl Cerebroside,Lipidoses, Glucosylceramide,Lipidosis Syndrome, Cerebroside,Lipidosis Syndromes, Cerebroside,Lipidosis, Glucosyl Cerebroside,Lipidosis, Glucosylceramide,Lipoid Histiocytoses (Kerasin Type),Lipoidoses, Kerasin,Lipoidosis, Kerasin,Non Neuronopathic Gaucher Disease,Splenomegaly, Gaucher,Syndrome, Cerebroside Lipidosis,Syndrome, Gaucher,Syndromes, Cerebroside Lipidosis,thesaurismoses, Kerasin,thesaurismosis, Kerasin
D005963 Glucosylceramides Cerebrosides which contain as their polar head group a glucose moiety bound in glycosidic linkage to the hydroxyl group of ceramides. Their accumulation in tissue, due to a defect in beta-glucosidase, is the cause of Gaucher's disease. Glucocerebroside,Glucocerebrosides,Glucosyl Ceramide,Glucosyl Ceramides,Glucosylceramide,Ceramide, Glucosyl,Ceramides, Glucosyl
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001617 beta-Glucosidase An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE. Cellobiases,Amygdalase,Cellobiase,Emulsion beta-D-Glucosidase,Gentiobiase,Emulsion beta D Glucosidase,beta Glucosidase,beta-D-Glucosidase, Emulsion

Related Publications

G A Grabowski, and S Gatt, and M Horowitz
January 2001, Progress in nucleic acid research and molecular biology,
G A Grabowski, and S Gatt, and M Horowitz
December 1996, Annals of the New York Academy of Sciences,
G A Grabowski, and S Gatt, and M Horowitz
July 1990, American journal of human genetics,
G A Grabowski, and S Gatt, and M Horowitz
November 1975, Biochemical and biophysical research communications,
G A Grabowski, and S Gatt, and M Horowitz
January 1982, Progress in clinical and biological research,
G A Grabowski, and S Gatt, and M Horowitz
September 1973, Biochemical and biophysical research communications,
G A Grabowski, and S Gatt, and M Horowitz
November 2008, Biological chemistry,
G A Grabowski, and S Gatt, and M Horowitz
January 1991, DNA and cell biology,
G A Grabowski, and S Gatt, and M Horowitz
November 2003, The American journal of pathology,
G A Grabowski, and S Gatt, and M Horowitz
August 1983, FEBS letters,
Copied contents to your clipboard!