Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. 2011

George M Carman, and Gil-Soo Han
Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA. carman@aesop.rutgers.edu

The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D053858 Metabolic Networks and Pathways Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites. Metabolic Networks,Metabolic Pathways,Metabolic Network,Metabolic Pathway,Network, Metabolic,Networks, Metabolic,Pathway, Metabolic,Pathways, Metabolic
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

George M Carman, and Gil-Soo Han
June 1996, The Journal of biological chemistry,
George M Carman, and Gil-Soo Han
September 2008, Progress in lipid research,
George M Carman, and Gil-Soo Han
March 1996, Microbiological reviews,
George M Carman, and Gil-Soo Han
January 2010, Acta biochimica Polonica,
George M Carman, and Gil-Soo Han
September 2009, Biochimica et biophysica acta,
George M Carman, and Gil-Soo Han
July 1998, The Journal of biological chemistry,
George M Carman, and Gil-Soo Han
August 1995, The Journal of biological chemistry,
George M Carman, and Gil-Soo Han
April 2001, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!