Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the polycomb group repressor Sex Comb on Midleg. 2011

Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
Department of Chemistry and Biochemistry, UCLA, Los, Angeles, California 90095-1569, USA.

The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-terminal sterile α motif (SAM) domain, is crucial for the efficient sumoylation of Scm. Scm is associated with the major Polycomb response element (PRE) of the homeotic gene Ultrabithorax (Ubx), and efficient PRE recruitment requires an intact Scm SAM domain. Global reduction of sumoylation augments binding of Scm to the PRE. This is likely to be a direct effect of Scm sumoylation because mutations in the SUMO acceptor sites in Scm enhance its recruitment to the PRE, whereas translational fusion of SUMO to the Scm N terminus interferes with this recruitment. In the metathorax, Ubx expression promotes haltere formation and suppresses wing development. When SUMO levels are reduced, we observe decreased expression of Ubx and partial haltere-to-wing transformation phenotypes. These observations suggest that SUMO negatively regulates Scm function by impeding its recruitment to the Ubx major PRE.

UI MeSH Term Description Entries
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D044763 Ubiquitin-Conjugating Enzymes A class of enzymes that form a thioester bond to UBIQUITIN with the assistance of UBIQUITIN-ACTIVATING ENZYMES. They transfer ubiquitin to the LYSINE of a substrate protein with the assistance of UBIQUITIN-PROTEIN LIGASES. Ubiquitin-Conjugating Enzyme,HHR6 Protein,Ubiquitin-Conjugating Enzyme E2,E2, Ubiquitin-Conjugating Enzyme,Enzyme E2, Ubiquitin-Conjugating,Enzyme, Ubiquitin-Conjugating,Enzymes, Ubiquitin-Conjugating,Ubiquitin Conjugating Enzyme,Ubiquitin Conjugating Enzyme E2,Ubiquitin Conjugating Enzymes
D058207 Sumoylation A type of POST-TRANSLATIONAL PROTEIN MODIFICATION by SMALL UBIQUITIN-RELATED MODIFIER PROTEINS (also known as SUMO proteins). SUMO-Conjugation,SUMO Conjugation,SUMO-Conjugations,Sumoylations
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic

Related Publications

Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
July 2004, Genetics,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
February 2007, Biosensors & bioelectronics,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
May 2008, Genetics,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
August 2008, Journal of neurochemistry,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
November 2014, Cold Spring Harbor perspectives in biology,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
July 2005, The Yale journal of biology and medicine,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
January 2009, International journal for parasitology,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
August 2014, The Journal of biological chemistry,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
June 2012, The Journal of biological chemistry,
Matthew Smith, and Daniel R Mallin, and Jeffrey A Simon, and Albert J Courey
October 2011, The Journal of biological chemistry,
Copied contents to your clipboard!