Development of the olfactory system in turbot (Psetta maxima L.). 2011

M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain.

We have examined the histogenesis of the olfactory system during turbot development using histological and immunohistochemical methods. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was used to detect dividing cells, whereas calretinin (CR) immunohistochemistry was used to distinguish some neuronal components of the olfactory system. Around hatching, the olfactory placode of embryos transforms into an olfactory pit, which enlarges progressively during development. In metamorphic turbots, the right olfactory organ moves to the tip of the head. Each olfactory chamber opens to the external medium by two nostrils and accessory nasal sacs develop during metamorphosis. The order of birth of olfactory receptor cells in the sensory epithelium follows the pattern of most teleosts: ciliated cells differentiate prior to microvillous cells in turbot larvae, and crypt cells are generated during metamorphosis. Axons of olfactory sensory neurons reach the rostral forebrain by hatching, and calretinin-immunoreactive (CR-ir) glomerular fields were apparent during the subsequent larval development. During metamorphosis olfactory bulbs become strongly distorted by head torsion and glomeruli acquire asymmetric organization. The spatio-temporal course of proliferation in the olfactory system reveals changes in the distribution of dividing cells in the sensory epithelium throughout the developmental period investigated. In the olfactory bulb, proliferative activity becomes restricted to the ventral periventricular zone in turbot larvae, as well as in metamorphic specimens.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009832 Olfactory Nerve The 1st cranial nerve. The olfactory nerve conveys the sense of smell. It is formed by the axons of OLFACTORY RECEPTOR NEURONS which project from the olfactory epithelium (in the nasal epithelium) to the OLFACTORY BULB. Cranial Nerve I,First Cranial Nerve,Nervus Olfactorius,Fila Olfactoria,Olfactory Fila,Cranial Nerve Is,Cranial Nerve, First,Cranial Nerves, First,First Cranial Nerves,Nerve I, Cranial,Nerve Is, Cranial,Nerve, First Cranial,Nerve, Olfactory,Nerves, Olfactory,Olfactory Nerves
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D005412 Flatfishes Common name for the order Pleuronectiformes. A very distinctive group in that during development they become asymmetrical, i.e., one eye migrates to lie adjacent to the other. They swim on the eyeless side. FLOUNDER, sole, and turbot, along with several others, are included in this order. Pleuronectiformes,Scophthalmus maximus,Turbot,Psetta maxima,Solea,Turbots
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains

Related Publications

M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
September 2006, Journal of fish diseases,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
October 2011, Parasite immunology,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
December 2011, Cell and tissue research,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
October 2014, Tissue & cell,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
December 2013, Microbial pathogenesis,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
April 1999, The Journal of comparative neurology,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
July 1997, Journal of morphology,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
November 2014, Microbial pathogenesis,
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
July 2007, Aquatic toxicology (Amsterdam, Netherlands),
M J Doldán, and P Cid, and L Mantilla, and E de Miguel Villegas
January 2009, European journal of histochemistry : EJH,
Copied contents to your clipboard!