Molecular phylogenetic relationships and the coevolution of placentotrophy and superfetation in Poecilia (Poeciliidae: Cyprinodontiformes). 2011

Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
Department of Biology, University of California, Riverside, CA 92521, USA.

Members of Poeciliidae are used as model organisms for experimental studies on natural and sexual selection, and comparative studies of life-history evolution. The latter have demonstrated multiple origins of both superfetation and placentotrophy within Poeciliidae. Most recently, placentotrophy has been described in five species of Poecilia (Pamphorichthys), but only one of these (P.hasemani) shows evidence of superfetation. Here, we use a molecular phylogeny based on concatenated nuclear and mitochondrial gene sequences to test hypotheses of correlated evolution between superfetation and placentotrophy in Poecilia. Taxon sampling included all species in the subgenera Micropoecilia and Pamphorichthys for which the presence or absence of placentotrophy and superfetation have been determined, as well as representatives of all other Poecilia subgenera (Acanthophacelus, Limia, Mollienesia, Poecilia, Pseudolimia). Phylogenetic analyses were performed with maximum parsimony, maximum likelihood, and Bayesian methods; ancestral states for life-history characters were reconstructed with parsimony and SIMMAP; correlation analyses were performed with SIMMAP; and divergence times were estimated using a relaxed molecular clock. All subgenera in Poecilia were recovered as monophyletic. The basal split in Poecilia is between P. (Acanthophacelus)+P. (Micropoecilia) and the other five subgenera. In the latter clade, P. (Poecilia) is the sister-group to the remaining four subgenera. Within P. (Pamphorichthys), all analyses with the combined data set recovered P. (Pamphorichthys) araguaiensis as the sister taxon to P. (Pamphorichthys) hollandi, and P. (Pamphorichthys) scalpridens as the sister taxon to P. (Pamphorichthys) minor. P. (Pamphorichthys) hasemani was either the sister taxon to P. (Pamphorichthys) hollandi+P. (Pamphorichthys) minor (maximum likelihood, Bayesian) or the sister taxon to all other Pamphorichthys species (maximum parsimony). Ancestral state reconstructions suggest that placentotrophy and superfetation evolved on the same branch in P. (Micropoecilia), whereas placentotrophy evolved before superfetation in P. (Pamphorichthys). SIMMAP analyses indicate a statistically significant association between placentotrophy and superfetation. Within P. (Micropoecilia) both placentotrophy and superfetation evolved in ≤4 million years. Within P. (Pamphorichthys), superfetation evolved in ≤9 million years on the P. (Pamphorichthys) hasemani branch, and placentotrophy evolved in ≤10 million years in the common ancestor of this subgenus.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011036 Poecilia A genus of livebearing cyprinodont fish comprising the guppy and molly. Some species are virtually all female and depend on sperm from other species to stimulate egg development. Poecilia is used in carcinogenicity studies as well as neurologic and physiologic research. Guppy,Lebistes,Molly,Guppies,Mollies,Poecilias
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005260 Female Females
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations

Related Publications

Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
July 1999, Molecular phylogenetics and evolution,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
November 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
October 2022, Biology letters,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
February 2021, Zootaxa,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
January 2023, Mitochondrial DNA. Part B, Resources,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
October 2019, Mitochondrial DNA. Part B, Resources,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
March 2019, Molecular phylogenetics and evolution,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
August 2018, Zootaxa,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
January 2024, Molecular phylogenetics and evolution,
Robert W Meredith, and Marcelo N Pires, and David N Reznick, and Mark S Springer
May 2019, Journal of morphology,
Copied contents to your clipboard!