Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. 1978

F Bontemps, and L Hue, and H G Hers

The conversion of glucose into glucose 6-phosphate in an extract of isolated rat hepatocytes incubated in the presence of MgATP was studied spectrophotometrically at 340nm and also by a radiochemical procedure based on the release of (3)H from [2-(3)H]glucose. Both methods gave similar results. The glucose-saturation curve was sigmoidal and the shape of this curve was not influenced by the ionic composition of the incubation medium. The activity at 0.5mm-glucose was only 1-2% of V(max.), indicating a virtual absence of low-K(m) hexokinase in the preparation. The radiochemical method was also used for the determination of glucose phosphorylation by intact hepatocytes. The glucose-saturation curve was also markedly sigmoidal, but the s(0.5) (substrate concentration at half-maximal velocity) and the Hill coefficient were larger than in extracts of hepatocytes. These two parameters became smaller when cells were incubated in a medium in which Na(+) ions were replaced by K(+) ions. The increased rate of phosphorylation at low glucose concentration in a K(+) medium was accompanied by an increased rate of metabolite recycling between glucose and glucose 6-phosphate and also by an increased uptake of glucose. In both media phosphorylation of glucose was inhibited co-operatively by N-acetylglucosamine. Calculations indicate that this inhibition would reach 100% at saturation of the inhibitor, although at lower concentrations of N-acetylglucosamine it was smaller than expected from the known K(i) of N-acetylglucosamine for glucokinase. The rate of phosphorylation of glucose was proportional to the amount of glucokinase in hepatocytes from newborn rats and in conditions such as starvation and diabetes in which the total amount of glucokinase in the liver is decreased. In the same conditions, glucose 6-phosphatase activity was either normal or increased. It is concluded that the phosphorylation of glucose in isolated hepatocytes follows sigmoidal kinetics, which can be explained by the activity of glucokinase alone with no participation of low-K(m) hexokinase or of glucose 6-phosphatase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D005941 Glucokinase A group of enzymes that catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate. They are found in invertebrates and microorganisms, and are highly specific for glucose. (Enzyme Nomenclature, 1992) EC 2.7.1.2.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005952 Glucose-6-Phosphatase An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9. Glucosephosphatase,Glucose 6-Phosphatase,Glucose-6-Phosphate Phosphohydrolase,Glucose 6 Phosphatase
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D000117 Acetylglucosamine The N-acetyl derivative of glucosamine. Acetyl Glucosamine,N-Acetyl Glucosamine,N-Acetyl-beta-D-Glucosamine,N-Acetylglucosamine,beta-N-Acetylglucosamine,2-Acetamido-2-Deoxy-D-Glucose,2-Acetamido-2-Deoxyglucose,N-Acetyl-D-Glucosamine,2 Acetamido 2 Deoxy D Glucose,2 Acetamido 2 Deoxyglucose,Glucosamine, Acetyl,Glucosamine, N-Acetyl,N Acetyl D Glucosamine,N Acetyl Glucosamine,N Acetyl beta D Glucosamine,N Acetylglucosamine,beta N Acetylglucosamine
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age

Related Publications

F Bontemps, and L Hue, and H G Hers
January 1975, Enzyme,
F Bontemps, and L Hue, and H G Hers
January 1989, European journal of biochemistry,
F Bontemps, and L Hue, and H G Hers
October 1994, Biochemical and biophysical research communications,
F Bontemps, and L Hue, and H G Hers
February 1964, The Biochemical journal,
F Bontemps, and L Hue, and H G Hers
February 1983, The American journal of physiology,
F Bontemps, and L Hue, and H G Hers
January 2000, Metabolism: clinical and experimental,
F Bontemps, and L Hue, and H G Hers
August 1979, The Biochemical journal,
F Bontemps, and L Hue, and H G Hers
September 1990, European journal of biochemistry,
F Bontemps, and L Hue, and H G Hers
April 1987, The Journal of antibiotics,
Copied contents to your clipboard!