To determine the mechanism of the maturation of the brush border membrane in intestinal epithelial cells, purification of the plasma membrane from undifferentiated rat crypt cells and of the basal-lateral membrane from villous cells has been performed. The method is based on density perturbation of the mitochondria to selectively disrupt their association with the membrane. With both cell populations, two membrane subfractions displaying the same respective density on sucrose gradient have been obtained with an overall yield of 15--20% and a 10-fold enrichment of the plasma membrane markers 5'-nucleotidase and (Na+ + K+)-dependent, ouabain-sensitive ATPase chosen to follow their purification. The four fractions were constituted by sheets and apparently closed vesicles of various sizes. Each fraction was characterized by a distinct protein composition and different levels of enzyme activities. The cells, used for the preparation of the membranes, were isolated as a villus to crypt gradient. This separation and that of the membranes, led to the conclusion that the (Na+ + K+)-dependent ATPase is localized principally in the plasma membrane of all cells whatever their state of maturation, while 5'-nucleotidase is predominantly located in the basal-lateral membrane of the villous cells and may serve as a specific marker for the purification of this membrane. Finally it has been shown that aminopeptidase, dissacharidases and alkaline phosphatase do not appear simultaneously in the maturation process of the cells, alkaline phosphatase being absent from the crypt cells and aminopeptidase being the first to be synthesized. This enzyme seems to appear in the crypt cells membrane before being integrated into the mature brush border membrane.