Overview: mechanism of translation initiation in eukaryotes. 1990

W C Merrick
Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio.

Evidence to date has placed considerable emphasis on protein synthesis initiation as the dominant site of translational control. Two specific aspects are regulated, the binding of the initiator tRNA to the 40S subunits (as a ternary complex with eIF-2 and GTP) and the subsequent binding of mRNA to the complex of the 40S subunit with initiator tRNA. In addition to regulation, eIF-2 and Met-tRNAf are in large part responsible for selection of the initiating AUG codon. The utilization of most host mRNAs requires an m7G cap structure at the 5' end. However, many viral systems appear to use one of two alternate initiation schemes referred to as re-initiation and internal initiation. The function of specific initiation factors is presented and the consequences of altering the activity of these factors is discussed.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012358 RNA, Transfer, Met A transfer RNA which is specific for carrying methionine to sites on the ribosomes. During initiation of protein synthesis, tRNA(f)Met in prokaryotic cells and tRNA(i)Met in eukaryotic cells binds to the start codon (CODON, INITIATOR). Initiator tRNA,Methionine-Specific tRNA,Methionine-Specific tRNAm,RNA, Transfer, Initiator,Transfer RNA, Met,tRNA(f)Met,tRNA(i)Met,tRNA(m)Met,tRNAMet,tRNA(Met),Met Transfer RNA,Methionine Specific tRNA,Methionine Specific tRNAm,RNA, Met Transfer,tRNA, Initiator,tRNA, Methionine-Specific,tRNAm, Methionine-Specific
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral

Related Publications

W C Merrick
June 2012, Nature structural & molecular biology,
W C Merrick
March 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
W C Merrick
April 2019, Cold Spring Harbor perspectives in biology,
W C Merrick
March 2003, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
W C Merrick
January 1991, Molekuliarnaia biologiia,
W C Merrick
January 1977, Postepy biochemii,
W C Merrick
January 2006, Nature structural & molecular biology,
W C Merrick
October 2006, Current opinion in chemical biology,
W C Merrick
January 1994, Genetic engineering,
Copied contents to your clipboard!