Relative stability of de novo four-helix bundle proteins: insights from coarse grained molecular simulations. 2011

Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
Department of Chemistry and Biochemistry and Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA. gbellesia@lanl.gov

We use a recently developed coarse-grained computational model to investigate the relative stability of two different sets of de novo designed four-helix bundle proteins. Our simulations suggest a possible explanation for the experimentally observed increase in stability of the four-helix bundles with increasing sequence length. In details, we show that both short subsequences composed only by polar residues and additional nonpolar residues inserted, via different point mutations in ad hoc positions, seem to play a significant role in stabilizing the four-helix bundle conformation in the longer sequences. Finally, we propose an additional mutation that rescues a short amino acid sequence that would otherwise adopt a compact misfolded state. Our work suggests that simple computational models can be used as a complementary tool in the design process of de novo proteins.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D055550 Protein Stability The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations. Protein Stabilities,Stabilities, Protein,Stability, Protein

Related Publications

Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
April 2021, Scientific reports,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
July 2013, Proteins,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
August 2006, Proteins,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
October 2008, Biochemistry,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
December 2000, Biochemistry,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
February 2011, Journal of molecular graphics & modelling,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
March 2001, Journal of the American Chemical Society,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
March 2007, Journal of structural biology,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
August 2013, Journal of chemical theory and computation,
Giovanni Bellesia, and Andrew I Jewett, and Joan-Emma Shea
October 2014, Proteins,
Copied contents to your clipboard!