Liver-expressed Igkappa superantigen induces tolerance of polyclonal B cells by clonal deletion not kappa to lambda receptor editing. 2011

Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.

Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ-light chain-reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell-activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.

UI MeSH Term Description Entries
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D015551 Autoimmunity Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES. Autoimmune Response,Autoimmune Responses,Autoimmunities
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
April 1993, The Journal of experimental medicine,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
February 1993, Seminars in immunology,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
January 2022, Frontiers in immunology,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
March 2005, The Journal of experimental medicine,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
February 1993, European journal of immunology,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
January 1987, Immunology today,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
January 2007, The Journal of experimental medicine,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
June 2009, Nature immunology,
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
October 1981, Journal of immunology (Baltimore, Md. : 1950),
Takayuki Ota, and Miyo Ota, and Bao Hoa Duong, and Amanda L Gavin, and David Nemazee
February 1995, Transplantation proceedings,
Copied contents to your clipboard!