Imaging of multidrug resistance in cancer. 2011

S Dizdarevic, and A M Peters
Department of Nuclear Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK. sabina.dizdarevic@bsuh.nhs.uk

Primary intrinsic and/or acquired multidrug resistance (MDR) is the main obstacle to successful cancer treatment. Functional molecular imaging of MDR in cancer using single photon or positron emitters may be helpful to identify multidrug-resistant tumours and predict not only those patients who are resistant to treatment, with a clinically unfavourable prognosis, but also those who are susceptible to the development of drug toxicity or even certain tumours . Variations in the mdr1 gene product may directly affect the therapeutic effectiveness, and single nucleotide polymorphisms for the mdr1 gene may be associated with altered oral bioavailability of MDR1 substrates, drug resistance, and a susceptibility to some human diseases. The challenge of translating the concept of MDR modulation in vivo involves a complex cellular interplay between both malignant and normal cells. Integration and correlation of functional single photon emission tomography or positron emission tomography imaging findings with mdr1 genotype and clinical data may contribute to efficient management by selecting cancer patients with the appropriate molecular phenotype for maximal individual therapeutic benefit, as well as those who are non-responders. This review describes a role for functional imaging of classical mechanisms of MDR with an emphasis on readily available [(99m)Tc]MIBI scintigraphy. MIBI scintigraphy has been shown to be a non-invasive cost-effective in vivo assay of ATP-binding cassette transporters associated with MDR in cancer, including P-glycoprotein, multidrug-resistant protein 1 and breast cancer resistant protein. New imaging agents for molecular targets such as vascular endothelial growth factor and HER2 receptors, may potentially be combined with MDR imaging substrates to more accurately predict the therapeutic response to anticancer drugs, guiding individualised treatment while minimising the economic health costs of ineffective therapy in an era of personalised medicine.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011877 Radionuclide Imaging The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph. Gamma Camera Imaging,Radioisotope Scanning,Scanning, Radioisotope,Scintigraphy,Scintiphotography,Imaging, Gamma Camera,Imaging, Radionuclide
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017256 Technetium Tc 99m Sestamibi A technetium imaging agent used to reveal blood-starved cardiac tissue during a heart attack. 99mTc-Hexamibi,99mTc-Sestamibi,Tc MIBI,Cardiolite,Tc-99m-Methoxy-2-isobutylisonitrile,Technetium Tc 99m 2-Methoxy-2-methylpropylisonitrile,Technetium Tc 99m Sestamibi Chloride,Technetium-99m-Hexamibi,Technetium-99m-Sestamibi,99mTc Hexamibi,99mTc Sestamibi,Tc 99m Methoxy 2 isobutylisonitrile,Technetium 99m Hexamibi,Technetium 99m Sestamibi,Technetium Tc 99m 2 Methoxy 2 methylpropylisonitrile
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug
D019450 Genes, MDR Genes for MEMBRANE TRANSPORT PROTEINS that confer resistance to toxic compounds. Several superfamilies of these multidrug export proteins are known and found in both prokaryotes and eukaryotes. MDR Genes,Multidrug Resistance Gene,Multidrug Efflux Pump Genes,Gene, MDR,Gene, Multidrug Resistance,Genes, Multidrug Resistance,MDR Gene,Multidrug Resistance Genes,Resistance Gene, Multidrug,Resistance Genes, Multidrug
D020168 ATP Binding Cassette Transporter, Subfamily B, Member 1 A 170-kDa transmembrane glycoprotein from the superfamily of ATP-BINDING CASSETTE TRANSPORTERS. It serves as an ATP-dependent efflux pump for a variety of chemicals, including many ANTINEOPLASTIC AGENTS. Overexpression of this glycoprotein is associated with multidrug resistance (see DRUG RESISTANCE, MULTIPLE). ATP-Dependent Translocase ABCB1,MDR1 Protein,MDR1B Protein,Multidrug Resistance Protein 1,P-Glycoprotein,P-Glycoprotein 1,ABCB1 Protein,ATP Binding Cassette Transporter, Sub-Family B, Member 1,ATP-Binding Cassette, Sub-Family B, Member 1,CD243 Antigen,PGY-1 Protein,1, P-Glycoprotein,ABCB1, ATP-Dependent Translocase,ATP Dependent Translocase ABCB1,Antigen, CD243,P Glycoprotein,P Glycoprotein 1,PGY 1 Protein,Protein, MDR1B,Translocase ABCB1, ATP-Dependent

Related Publications

S Dizdarevic, and A M Peters
June 1999, The quarterly journal of nuclear medicine : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR),
S Dizdarevic, and A M Peters
January 2006, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
S Dizdarevic, and A M Peters
April 2016, Medical hypotheses,
S Dizdarevic, and A M Peters
March 1989, Scientific American,
S Dizdarevic, and A M Peters
November 1989, Lancet (London, England),
S Dizdarevic, and A M Peters
January 1994, BMJ (Clinical research ed.),
S Dizdarevic, and A M Peters
January 2010, Methods in molecular biology (Clifton, N.J.),
S Dizdarevic, and A M Peters
January 2001, Hematology (Amsterdam, Netherlands),
S Dizdarevic, and A M Peters
January 1999, Nature biotechnology,
S Dizdarevic, and A M Peters
October 2000, Nature biotechnology,
Copied contents to your clipboard!