Structural requirements for the binding of oligosaccharides to immobilized lectin of Erythrina variegata (Linn) var. orientalis. 1990

H Li, and K Yamamoto, and H Kawashima, and T Osawa
Division of Chemical Toxicology and Immunochemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.

The structural requirements for the interaction of asparagine-linked oligosaccharide moieties of glycoproteins with Erythrina variegata agglutinin (EVA) were investigated by means of affinity chromatography on an EVA-Sepharose column. Some of the branched poly-N-acetyllactosamine-type oligosaccharides obtained from human erythrocyte band 3 glycoprotein were found to show high affinity to EVA-Sepharose, whereas complex-type oligosaccharides were shown to have low affinity. Hybrid type, oligomannose-type and unbranched poly-N-acetyllactosamine-type oligosaccharides bound very little or not at all to EVA-Sepharose. To further study the carbohydrate-binding specificity of this lectin, we investigated the interaction of immobilized EVA and oligosaccharide fragments obtained through partial hydrolysis from branched poly-N-acetyllactosamine-type oligosaccharides. Branched poly-N-acetyllactosamine-type oligosaccharides were subjected to limited hydrolysis with 0.1% trifluoroacetic acid at 100 degrees C for 40 min and then separated on an amino-bonded silica column. One of pentasaccharides thus prepared strongly bound to the EVA-Sepharose column. Structural analysis of this pentasaccharide showed that the Gal beta 1-4GlcNAc beta 1-3(Gal beta 1-4GlcNAc beta 1-6)Gal sugar sequence, which is an I-antigen determinant, was essential for the high affinity binding of the oligosaccharides to the EVA-Sepharose column.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004895 Erythrina A genus of leguminous shrubs or trees, mainly tropical, yielding useful compounds such as ALKALOIDS and PLANT LECTINS. Erythrina crista-galli,Erythrina cristagalli,Erythrina mulungu,Erythrina variegata,Erythrina verna,Indian Coral Tree,Coral Tree, Indian,Coral Trees, Indian,Erythrina crista galli,Indian Coral Trees,Tree, Indian Coral,Trees, Indian Coral
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal
D037121 Plant Lectins Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms. Lectins, Plant,Phytagglutinin,Plant Agglutinin,Plant Lectin,Agglutinins, Plant,Phytagglutinins,Plant Agglutinins,Agglutinin, Plant,Lectin, Plant

Related Publications

H Li, and K Yamamoto, and H Kawashima, and T Osawa
November 1992, Bioscience, biotechnology, and biochemistry,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
January 1993, Bioscience, biotechnology, and biochemistry,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
January 1975, Lloydia,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
February 2012, Natural product communications,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
September 1981, Biochemistry,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
August 1983, Carbohydrate research,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
January 2015, Applied biochemistry and biotechnology,
H Li, and K Yamamoto, and H Kawashima, and T Osawa
July 2010, Pharmacognosy reviews,
Copied contents to your clipboard!