Purification and properties of arylmannosidases from mung bean seedlings and soybean cells. 1990

I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284.

Two arylmannosidases (signified as A and B) were purified to homogeneity from soluble and microsomal fractions of mung bean seedlings. Arylmannosidase A from the microsomes appeared the same on native gels and on SDS gels as soluble arylmannosidase A, the same was true for arylmannosidase B. Sedimentation velocity studies indicated that both enzymes were homogeneous, and that arylmannosidase A had a molecular mass of 237 kd while B had a molecular mass of 243 kd. Arylmannosidase A showed two major protein bands on SDS gels with molecular masses of 60 and 55 kd, and minor bands of 79, 39 and 35 kd. All of these bands were N-linked since they were susceptible to digestion by endoglucosaminidase H. In addition, at least the major bands could be detected by Western blots with antibody raised against the xylose moiety of N-linked plant oligosaccharides, and they could also be labeled in soybean suspension cells with [2-3H]mannose. Arylmannosidase B showed three major bands with molecular masses of 72, 55 and 45 kd, and minor bands of 42 and 39 kd. With the possible exception of the 45 and 42 kd bands, all of these bands are glycoproteins. Arylmannosidases A and B showed somewhat different kinetics in terms of mannose release from high-mannose oligosaccharides, but they were equally susceptible to inhibition by swainsonine and mannostatin A. Polyclonal antibody raised against the arylmannosidase B cross-reacted equally well with arylmannosidase A from mung bean seedlings and with arylmannosidase from soybean cells. However, monoclonal antibody against mung bean arylmannosidase A was much less effective against arylmannosidase B. Antibody was used to examine the biosynthesis and structure of the carbohydrate chains of arylmannosidase in soybean cells grown in [2-3H]mannose. Treatment of the purified enzyme with Endo H released approximately 50% of the radioactivity, and these labeled oligosaccharides were of the high-mannose type, i.e. mostly Man9GlcNAc. The precipitated protein isolated from the Endo H treatment still contained 50% of the radioactivity, and this was present in modified structures that probably contain xylose residues.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008361 Mannosidases Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE. Mannosidase
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
June 1986, Archives of biochemistry and biophysics,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
February 1963, Archives of biochemistry and biophysics,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
March 1967, Archives of biochemistry and biophysics,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
June 1986, Plant physiology,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
May 1958, The Journal of biological chemistry,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
June 1989, Plant physiology,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
January 1992, Bioscience, biotechnology, and biochemistry,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
August 1974, European journal of biochemistry,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
June 2016, 3 Biotech,
I Pastuszak, and G P Kaushal, and K A Wall, and Y T Pan, and A Sturm, and A D Elbein
December 1982, Plant physiology,
Copied contents to your clipboard!