Mutational analysis of the function of the a-subunit of the F0F1-APPase of Escherichia coli. 1990

S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra.

In a model proposed for the structure of the a-subunit of the Escherichia coli F0F1-ATPase (Howitt, S.M., Gibson, F. and Cox, G.B. (1988) Biochim. Biophys. Acta 936, 74-80), a cluster of charged residues, including one arginine and four aspartic acid residues, lie on the periplasmic side of the membrane. On the cytoplasmic side, three pairs of lysine residues and an arginine residue are present. Site-directed mutagenesis was used to investigate the roles of these residues. It was found that none was directly involved in the proton pore. However, the substitutions of Asp-124 or Asp-44 by asparagine or Arg-140 by glutamine had similar effects in that the membranes from such mutants from which the F1-ATPase was removed were proton-impermeable. A combination of the Asp-44 mutation with either the Asp-124 or Arg-140 mutations in the same strain resulted in complete loss of oxidative phosphorylation. It was tentatively concluded that Asp-124 and Arg-140 form a salt bridge, as did Asp-44 with an unknown residue, and these salt bridges were concerned with the maintenance of correct a-subunit structure. Further support for this conclusion was obtained when second site revertants of a Glu-219 to histidine mutant were found to have either histidine or leucine replacing Arg-140. Thus, the lack of the Asp-124/Arg-140 salt bridge might enable repositioning of the helices of the a-subunit such that His-219 becomes a functional component of the proton pore.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
July 1992, Journal of bacteriology,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
November 1995, Biochemical Society transactions,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
November 1988, The Journal of biological chemistry,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
January 1991, Archives of biochemistry and biophysics,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
May 1999, The Journal of biological chemistry,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
January 1994, Biochimica et biophysica acta,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
February 1990, Biochimica et biophysica acta,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
January 1992, Archives of biochemistry and biophysics,
S M Howitt, and R N Lightowlers, and F Gibson, and G B Cox
June 2008, Biophysical journal,
Copied contents to your clipboard!