Identification of the UDP-glucose-binding polypeptide of callose synthase from Beta vulgaris L. by photoaffinity labeling with 5-azido-UDP-glucose. 1990

D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
Department of Food Science, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick 08903.

The photoaffinity probe 5-azidouridine 5'-[beta-32P]diphosphate glucose (5N3[32P]UDP-Glc) was used to identify a 57-kDa polypeptide as a strong candidate for the UDP-Glc-binding polypeptide of UDP-glucose: (1,3)-beta-glucan (callose) synthase from red beet (Beta vulgaris L.) storage tissue. Unlabeled 5N3UDP-Glc was a competitive inhibitor of callose synthase with a Ki of 310 microM. Callose synthase was purified from plasma membranes by a two-step solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate, followed by product entrapment, and photoincorporation of radioactivity from 5N3[32P]UDP-Glc was used to identify UDP-Glc-binding polypeptides that copurified with callose synthase activity. Photoinsertion into the 57-kDa band was closely correlated with all catalytic properties examined. Photolabeling of the 57-kDa polypeptide was enriched upon purification of callose synthase by product entrapment, was abolished with increasing levels of unlabeled UDP-Glc, was dependent upon the presence of divalent cations, and the pH dependence of photolabeling correlated with the pH activity profile of callose synthase. In addition, photolabeling of the 57-kDa band did not occur after phospholipase treatment, which destroys enzyme activity. The extent of labeling of this polypeptide thus correlates closely with the activity of callose synthase under a wide variety of conditions. These results imply that the polypeptide at 57 kDa represents the substrate-binding and cation-regulated component of the callose synthase complex of higher plants.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
May 1989, Plant physiology,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
January 2005, Bioconjugate chemistry,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
March 1990, The Journal of biological chemistry,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
April 1997, Drug metabolism and disposition: the biological fate of chemicals,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
October 1993, The Plant journal : for cell and molecular biology,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
August 1985, Biochemistry,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
November 1983, The Journal of biological chemistry,
D J Frost, and S M Read, and R R Drake, and B E Haley, and B P Wasserman
July 1989, The Journal of biological chemistry,
Copied contents to your clipboard!