Renal medullary circulation: hormonal control. 1990

S Y Chou, and J G Porush, and P F Faubert
Division of Nephrology and Hypertension, Brookdale Hospital Medical Center, Brooklyn, New York 11212.

It is now becoming apparent that the medullary circulation in the kidney can be regulated separately from overall renal blood flow. This characteristic of the medullary circulation plays an important role in the kidney's ability to excrete a dilute or concentrated urine in concert with changes in water and sodium transport in the distal nephron secondary to the action of vasopressin, prostaglandins, the renal nerves, and other hormones without significant other renal hemodynamic changes. There is strong evidence that renal autocoids such as angiotensin II and prostaglandins uniquely affect regional blood flow in the inner medulla because of the special structure and organization of the microvasculature in this region. There is also evidence that this regional blood flow is in part regulated by circulating hormones, such as vasopressin and atrial natriuretic peptide, which are released in response to changes in extracellular fluid volume or osmolality. In addition, data are emerging to suggest that the kallikrein-kinin system, acetylcholine, the renal nerves and adenosine participate in this regulation. In addition to the role of the medullary circulation in the urinary concentrating operation, there are data to suggest that the medullary circulation either directly (by changes in physical forces) or indirectly (by regulating medullary toxicity) may influence sodium excretion in a variety of conditions. In this regard, activation of the renin-angiotensin system locally reduces blood flow in the papilla which may be necessary before sodium retention is fully expressed in salt retaining states. Future research looking at the microvasculature of the medulla and papilla and those factors that control the contractility of these vessels are necessary before a clearer picture emerges. Nevertheless, from the data already available it seems reasonable to suggest that the medullary circulation may be as important to kidney function during physiological and pathophysiological states as is the cortical circulation.

UI MeSH Term Description Entries
D007610 Kallikreins Proteolytic enzymes from the serine endopeptidase family found in normal blood and urine. Specifically, Kallikreins are potent vasodilators and hypotensives and increase vascular permeability and affect smooth muscle. They act as infertility agents in men. Three forms are recognized, PLASMA KALLIKREIN (EC 3.4.21.34), TISSUE KALLIKREIN (EC 3.4.21.35), and PROSTATE-SPECIFIC ANTIGEN (EC 3.4.21.77). Kallikrein,Kininogenase,Callicrein,Dilminal,Kallidinogenase,Kalliginogenase,Kallikrein A,Kallikrein B',Kallikrein Light Chain,Kinin-Forming Enzyme,Padutin,alpha-Kallikrein,beta-Kallikrein,beta-Kallikrein B,Enzyme, Kinin-Forming,Kinin Forming Enzyme,Light Chain, Kallikrein,alpha Kallikrein,beta Kallikrein,beta Kallikrein B
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007671 Kidney Concentrating Ability The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma. Urine Concentrating Ability,Abilities, Kidney Concentrating,Abilities, Urine Concentrating,Ability, Kidney Concentrating,Ability, Urine Concentrating,Concentrating Abilities, Kidney,Concentrating Abilities, Urine,Concentrating Ability, Kidney,Concentrating Ability, Urine,Kidney Concentrating Abilities,Urine Concentrating Abilities
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007705 Kinins A generic term used to describe a group of polypeptides with related chemical structures and pharmacological properties that are widely distributed in nature. These peptides are AUTACOIDS that act locally to produce pain, vasodilatation, increased vascular permeability, and the synthesis of prostaglandins. Thus, they comprise a subset of the large number of mediators that contribute to the inflammatory response. (From Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 8th ed, p588) Kinin
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Y Chou, and J G Porush, and P F Faubert
January 1987, Advances in nephrology from the Necker Hospital,
S Y Chou, and J G Porush, and P F Faubert
January 2012, Comprehensive Physiology,
S Y Chou, and J G Porush, and P F Faubert
February 2010, Clinical and experimental pharmacology & physiology,
S Y Chou, and J G Porush, and P F Faubert
January 1982, Nephron,
S Y Chou, and J G Porush, and P F Faubert
August 1997, Clinical and experimental pharmacology & physiology,
S Y Chou, and J G Porush, and P F Faubert
November 1993, The American journal of physiology,
S Y Chou, and J G Porush, and P F Faubert
April 1993, The American journal of physiology,
S Y Chou, and J G Porush, and P F Faubert
May 1983, Acta physiologica Scandinavica,
S Y Chou, and J G Porush, and P F Faubert
December 1992, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
S Y Chou, and J G Porush, and P F Faubert
January 2010, Nihon Jinzo Gakkai shi,
Copied contents to your clipboard!