GABAB receptor modulation of synaptic function. 2011

Jason R Chalifoux, and Adam G Carter
Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, United States.

Neuromodulators have complex effects on both the presynaptic release and postsynaptic detection of neurotransmitters. Here we describe recent advances in our understanding of synaptic modulation by metabotropic GABAB receptors. By inhibiting multivesicular release from the presynaptic terminal, these receptors decrease the synaptic glutamate signal. GABAB receptors also inhibit the Ca2+ permeability of NMDA receptors to decrease Ca2+ signals in postsynaptic spines. These new findings highlight the importance of GABAB receptors in regulating many aspects of synaptic transmission. They also point to novel questions about the spatiotemporal dynamics and sources of synaptic modulation in the brain.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018080 Receptors, GABA-B A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS. Baclofen Receptors,GABA-B Receptors,Baclofen Receptor,GABA receptor rho1,GABA type B receptor, subunit 1,GABA(B)R1,GABA(B)R1 receptor,GABA(B)R1a protein,GABA(B)R1a receptor,GABA(B)R1b protein,GABA(B)R1b receptor,GABA-B Receptor,GABBR1 protein,GB1a protein,GB1b protein,GBR1B protein,Receptors, Baclofen,rho1 subunit, GABA receptor

Related Publications

Jason R Chalifoux, and Adam G Carter
March 2007, Journal of neurophysiology,
Jason R Chalifoux, and Adam G Carter
January 2010, Advances in pharmacology (San Diego, Calif.),
Jason R Chalifoux, and Adam G Carter
February 2021, Neuroscience,
Jason R Chalifoux, and Adam G Carter
March 2005, The Journal of pharmacology and experimental therapeutics,
Jason R Chalifoux, and Adam G Carter
May 2021, Science advances,
Jason R Chalifoux, and Adam G Carter
November 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jason R Chalifoux, and Adam G Carter
January 2020, Advances in pharmacology (San Diego, Calif.),
Jason R Chalifoux, and Adam G Carter
November 2020, Journal of neuroendocrinology,
Jason R Chalifoux, and Adam G Carter
January 1999, Science (New York, N.Y.),
Copied contents to your clipboard!