Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. 2011

Xin Ming
Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. xming@email.unc.edu

BACKGROUND There is great potential for antisense and siRNA oligonucleotides to become mainstream therapeutic entities thanks to their high specificity and wide therapeutic target space compared with small molecules. Despite this potential, the pharmacological targets within the cells are less accessible to oligonucleotides that are hydrophilic and often charged. Oligonucleotides access their intracellular targets mainly by means of endocytosis, but only a fraction of them reach their targets, as delivery requires functional synergy of cellular uptake and intracellular trafficking. METHODS This review provides an update on the progress of receptor-targeted delivery of oligonucleotides over the last 15 years and summarizes various targeting moieties for oligonucleotide delivery and coupling strategies. To inspire new strategies that can lead to oligonucleotides in the clinic, this review highlights how oligonucleotides successfully reach their intracellular targets by means of receptor-mediated endocytosis. CONCLUSIONS Understanding the mechanisms of oligonucleotide internalization has led to greater cellular uptake and superior endosomal release through the rational design of receptor-targeted delivery systems. Further improvements will again depend on a better understanding of the intracellular trafficking of oligonucleotides.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011992 Endosomes Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. Receptosomes,Endosome,Receptosome
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D034741 RNA, Small Interfering Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions. RNA, Scan,Repeat-Associated siRNA,Scan RNA,Small Scan RNA,Trans-Acting siRNA,siRNA,siRNA, Repeat-Associated,siRNA, Trans-Acting,Short Hairpin RNA,Short Interfering RNA,Small Hairpin RNA,Small Interfering RNA,scnRNA,shRNA,tasiRNA,Hairpin RNA, Short,Hairpin RNA, Small,Interfering RNA, Short,Interfering RNA, Small,RNA, Short Hairpin,RNA, Short Interfering,RNA, Small Hairpin,RNA, Small Scan,Repeat Associated siRNA,Scan RNA, Small,Trans Acting siRNA,siRNA, Repeat Associated,siRNA, Trans Acting

Related Publications

Xin Ming
March 2009, Journal of controlled release : official journal of the Controlled Release Society,
Xin Ming
August 2009, Journal of drug targeting,
Xin Ming
July 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Xin Ming
May 2003, Cellular and molecular life sciences : CMLS,
Xin Ming
November 2006, Advanced drug delivery reviews,
Copied contents to your clipboard!