Production and characterization of monoclonal antibodies against chicken lymphocyte surface antigens. 1990

T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
Department of Epizootiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.

A panel of monoclonal antibodies (mAbs) with specificity for chicken lymphocyte surface antigens was established and characterized based on their reactivities against chicken lymphoid cells and tumor cell lines on flow cytometry. Three mAbs (7-3G-2, 7-2E-8, and JB-2) reacted preferentially with thymocytes, however, none of them reacted with Marek's disease derived T lymphoblastoid cell lines. Four mAbs (6-27A-1, 4-5C-5, Lc-4, and Lc-6) reacted with spleen cells and peripheral blood leukocytes as well as thymocytes. All seven mAbs reacted with chicken embryonic thymocytes from day 12 of embryonic life onward. All mAbs showed no reactivity against bursal lymphocytes.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000944 Antigens, Differentiation, B-Lymphocyte Membrane antigens associated with maturation stages of B-lymphocytes, often expressed in tumors of B-cell origin. Antigens, Differentiation, B-Cell,B-Cell Differentiation Antigens,B-Lymphocyte Differentiation Antigens,Blast-2 Antigen, B-Cell,Differentiation Antigens, B-Cell,Differentiation Antigens, B-Lymphocyte,Leu Antigens, B-Lymphocyte,Plasma Cell Antigens PC-1,Antigens, Differentiation, B Lymphocyte,Antigens, Plasma Cell, PC-1,B-Cell Blast-2 Antigen,Antigen, B-Cell Blast-2,Antigens, B-Cell Differentiation,Antigens, B-Lymphocyte Differentiation,Antigens, B-Lymphocyte Leu,B Cell Blast 2 Antigen,B Cell Differentiation Antigens,B Lymphocyte Differentiation Antigens,B-Lymphocyte Leu Antigens,Blast 2 Antigen, B Cell,Differentiation Antigens, B Cell,Differentiation Antigens, B Lymphocyte,Leu Antigens, B Lymphocyte,Plasma Cell Antigens PC 1
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
January 1983, Hybridoma,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
January 1987, Progress in clinical and biological research,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
April 1988, Veterinary immunology and immunopathology,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
October 2008, Hybridoma (2005),
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
November 2010, Developmental and comparative immunology,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
June 1978, Nature,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
January 1985, Hybridoma,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
December 1989, FEMS microbiology immunology,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
December 1989, The Tohoku journal of experimental medicine,
T Kondo, and M Hattori, and H Kodama, and M Onuma, and T Mikami
January 1987, Problemy tuberkuleza,
Copied contents to your clipboard!