Immunocytochemical demonstration of the peroxisomal ATPase of yeasts. 1990

A C Douma, and M Veenhuis, and H R Waterham, and W Harder
Department of Microbiology, Haren, The Netherlands.

The presence of an ATPase on yeast peroxisomal membranes was studied by immunological methods. Western blot analysis of purified peroxisomal membranes from several yeasts revealed distinct cross-reaction with specific antibodies against the F1-part or the beta-subunit of the mitochondrial ATPase of Saccharomyces cerevisiae. This was not due to mitochondrial contamination as was demonstrated by analytical sucrose gradient centrifugation. Protein A-gold labelling carried out on Lowicryl-embedded methanol-grown Hansenula polymorpha using these antibodies did not result in significant staining. However, when organelles isolated from this yeast were successively incubated with antibodies and protein A-gold prior to embedding, specific labelling was observed on both the peroxisomal membrane and the membrane of damaged mitochondria but not on intact mitochondria. Specific labelling of the peroxisomal membrane was confirmed by freeze-fracture immunocytochemistry. In addition to the peroxisomal membrane, the mitochondrial membrane was also labelled in these experiments. Freeze-fracture immunocytochemistry was also successful for the localization of peroxisomal matrix proteins, e.g. alcohol oxidase and dihydroxyacetone synthase, and of mitochondrial membrane proteins, e.g. cytochrome c oxidase.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1988, Virchows Archiv. B, Cell pathology including molecular pathology,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1984, Histochemistry,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 2021, Frontiers in cell and developmental biology,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1987, Advances in experimental medicine and biology,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
April 1972, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1984, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1978, Verhandlungen der Anatomischen Gesellschaft,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
August 1993, FEMS microbiology reviews,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
January 1996, Critical reviews in biotechnology,
A C Douma, and M Veenhuis, and H R Waterham, and W Harder
July 1987, The American journal of pathology,
Copied contents to your clipboard!