We propose a hybrid optical nanocavity consisting of photonic crystals coupled to a metal surface with a nanoscale air gap between. The hybridization of photonic crystal modes and surface plasmons across the gap forms hybrid cavity modes, which are highly confined in the low-loss air gap region. Deep subwavelength mode volume and high quality factor are demonstrated at telecommunication wavelength, resulting in an extremely large Q/V(m) ratio of 60,000 λ(-3). This new type of high-Q/V(m) broad-band hybrid nanocavity opens up opportunities for various applications in enhanced light-matter interactions.
| UI | MeSH Term | Description | Entries |
|---|