Assembly of imported subunit 8 into the ATP synthase complex of isolated yeast mitochondria. 1990

R H Law, and R J Devenish, and P Nagley
Department of Biochemistry, Monash University, Clayton, Victoria, Australia.

This study concerns the assembly into a multisubunit enzyme complex of a small hydrophobic protein imported into isolated mitochondria. Subunit 8 of yeast mitochondrial ATPase (normally a mitochondrial gene product) was expressed in vitro as a chimaeric precursor N9L/Y8-1, which includes an N-terminal-cleavable transit peptide to direct its import into mitochondria. Assembly into the enzyme complex of the imported subunit 8 was monitored by immunoadsorption using an immobilized anti-F1-beta monoclonal antibody. Preliminary experiments showed that N9L/Y8-1 imported into normal rho+ mitochondria, with its complement of fully assembled ATPase, did not lead to an appreciable assembly of the exogenous subunit 8. With the expectation that mitochondria previously depleted of subunit 8 could allow such assembly in vitro, target mitochondria were prepared from genetically modified yeast cells in which synthesis of subunit 8 was specifically blocked. Initially, mitochondria were prepared from strain M31, a mit- mutant completely incapable of intramitochondrial biosynthesis of subunit 8. These mit- mitochondria however were unsuitable for assembly studies because they could not import protein in vitro. A controlled depletion strategy was then evolved. An artificial nuclear gene encoding N9L/Y8-1 was brought under the control of a inducible promoter GAL1. This regulated gene construct, in a low copy number yeast expression vector, was introduced into strain M31 to generate strain YGL-1. Galactose control of the expression of N9L/Y8-1 was demonstrated by the ability of strain YGL-1 to grow vigorously on galactose as a carbon source, and by the inability to utilize ethanol alone for prolonged periods of growth. The measurement of bioenergetic parameters in mitochondria from YGL-1 cells experimentally depleted of subunit 8, by transferring growing cells from galactose to ethanol, was consistent with the presence in mitochondria of a mosaic of ATPase, namely fully assembled functional ATPase complexes and partially assembled complexes with defective F0 sectors. These mitochondria demonstrated very efficient import of N9L/Y8-1 and readily incorporated the imported processed subunit 8 protein into ATPase. Comparison of the kinetics of import and assembly of subunit 8 showed that assembly was noticeably delayed with respect to import. These findings open the way to a new systematic analysis of the assembly of imported proteins into multisubunit mitochondrial enzyme complexes.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011498 Protein Precursors Precursors, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

R H Law, and R J Devenish, and P Nagley
December 2003, Biochimica et biophysica acta,
R H Law, and R J Devenish, and P Nagley
June 1999, Journal of peptide science : an official publication of the European Peptide Society,
R H Law, and R J Devenish, and P Nagley
February 1990, The Biochemical journal,
R H Law, and R J Devenish, and P Nagley
November 1996, Archives of biochemistry and biophysics,
R H Law, and R J Devenish, and P Nagley
January 1999, The Journal of biological chemistry,
R H Law, and R J Devenish, and P Nagley
August 2000, Journal of bioenergetics and biomembranes,
R H Law, and R J Devenish, and P Nagley
March 2011, The EMBO journal,
R H Law, and R J Devenish, and P Nagley
August 1996, The Journal of biological chemistry,
Copied contents to your clipboard!