Helper activity of natural killer cells during the dendritic cell-mediated induction of melanoma-specific cytotoxic T cells. 2011

Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
Department of Surgery, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA.

Natural killer (NK) cells have been shown to mediate important immunoregulatory "helper" functions in addition to their cytolytic activity. In particular, NK cells are capable of preventing maturation-related dendritic cell (DC) "exhaustion," inducing the development of "type-1 polarized" mature DCs (DC1) with an enhanced ability to produce interleukin (IL)-12p70, a factor essential for type-1 immunity and effective anticancer responses. Here we show that the NK cell-mediated type-1 polarization of DCs can be applied in the context of patients with advanced cancer to enhance the efficacy of DCs in inducing tumor-specific cytotoxic T lymphocytes. NK cells isolated from patients with late-stage (stage III and IV) melanoma responded with high interferon-γ production and the induction of type-1-polarized DCs on exposure to defined combinations of stimulatory agents, including interferon-α and IL-18. The resulting DCs showed strongly-enhanced IL-12p70 production on subsequent T-cell interaction compared with immature DCs (average of 19-fold enhancement) and nonpolarized IL-1β/TNF-α/IL-6/PGE(2)-matured "standard" DCs (average of 215-fold enhancement). Additional inclusion of polyinosinic: polycytidylic acid during NK-DC cocultures optimized the expression of CD80, CD86, CD40, and HLA-DR on the resulting (NK)DC1, increased their CCR7-mediated migratory responsiveness to the lymph node-associated chemokine CCL21, and further enhanced their IL-12-producing capacity. When compared in vitro with immature DCs and nonpolarized standard DCs, (NK)DC1 were superior in inducing functional melanoma-specific cytotoxic T lymphocytes capable of recognizing multiple melanoma-associated antigens and killing melanoma cells. These results indicate that the helper function of NK cells can be used in clinical settings to improve the effectiveness of DC-based cancer vaccines.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D011070 Poly I-C Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
September 2006, American journal of reproductive immunology (New York, N.Y. : 1989),
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
August 2011, BMC complementary and alternative medicine,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
September 2011, Leukemia research,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
January 2016, Mediators of inflammation,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
January 2015, Frontiers in immunology,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
January 1983, Nature,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
September 2013, Journal of immunology (Baltimore, Md. : 1950),
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
July 1995, Journal of immunology (Baltimore, Md. : 1950),
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
December 2010, Immunology,
Jeffrey L Wong, and Robbie B Mailliard, and Stergios J Moschos, and Howard Edington, and Michael T Lotze, and John M Kirkwood, and Pawel Kalinski
December 2022, The Journal of physiology,
Copied contents to your clipboard!