Restriction endonuclease digestion of DNA. 1993

D R Smith
Molecular Neurobiology Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore.

The ability to cleave DNA at specific sites is one of the cornerstones of today's methods of DNA manipulation. Restriction endonucleases are bacterial enzymes that cleave duplex DNA at specific target sequences with the production of defined fragments. These enzymes can be purchased from the many manufacturers of biotechnology products. The nomenclature of enzymes is based on a simple system, proposed by Smith and Nathans. The name of the enzyme (such as Bam HI, Eco RI, and so forth) tells us about the origin of the enzyme, but does not give us any information about the specificity of cleavage. This has to be determined for each individual enzyme. The recognition site for most of the commonly used enzymes is a short palindromic sequence, usually of either 4, 5, or 6 bp in length, such as AGCT (for Alu I), GAATTC (for Eco RI), and so on. Each enzyme cuts the palindrome at a particular site, and two different enzymes may have the same recognition sequence, but cleave the DNA at different points within that sequence. The cleavage sites fall into three different categories, either flush (or blunt) in which the recognition site is cut in the middle, or either with 5'; or 3'; overhangs, in which case unpaired bases will be produced on both ends of the fragment. For a comprehensive review of restriction endonucleases, see Fuchs and Blakesley.

UI MeSH Term Description Entries
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
Copied contents to your clipboard!