IFN-alpha and IFN-gamma have different regulatory effects on IL-4-induced membrane expression of Fc epsilon RIIb and release of soluble Fc epsilon RIIb by human monocytes. 1990

A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
Division of Immunology, The Netherlands Cancer Institute, Amsterdam.

We used highly purified human monocytes to study the regulation of cell surface and secretion of the low affinity FcR for IgE (Fc epsilon RIIb). IL-4 induces Fc epsilon RIIb expression and soluble Fc epsilon RIIb release in a dose-dependent manner. Significant levels of Fc epsilon RIIb expression were obtained after 12 h of incubation with IL-4 and maximal expression was observed between 24 to 48 h after which the expression declined. Surface expression was followed by secretion of soluble Fc epsilon RIIb which reached maximal levels after 3 to 4 days of incubation and which remained constant throughout 7 days of culture. Induction of Fc epsilon RIIb expression by IL-4 was completely blocked by anti-IL-4 antibodies. Furthermore, IL-1 alpha, IL-2, IL-5, granulocyte-macrophage-CSF, IFN-alpha, IFN-gamma, low m.w. BCGF and also LPS all failed to induce Fc epsilon RIIb expression, demonstrating the specificity of the induction. Fc epsilon RIIb membrane expression induced by IL-4 was reduced in the presence of IFN-gamma and IFN-alpha. Strong inhibition of IL-4-induced Fc epsilon RIIb expression was observed at IFN-alpha concentrations of 450 U/ml (80%), and 100 U/ml of IFN-gamma reduced IL-4-induced Fc epsilon RIIb expression by 70%. Interestingly, soluble Fc epsilon RIIb release was strongly inhibited by IFN-alpha. In contrast, IFN-gamma did not affect soluble Fc epsilon RIIb release, suggesting that reduced membrane expression of Fc epsilon RIIb observed in the presence of IFN-gamma does not reflect inhibition of Fc epsilon RIIb expression but may represent enhanced cleavage or reduced anchoring in the membrane of Fc epsilon RIIb. Finally, IL-5 that has been shown to enhance IL-4-induced Fc epsilon RII on B cells does not enhance significantly IL-4-induced Fc epsilon RIIb membrane expression or subsequent soluble Fc epsilon RIIb release by monocytes. Taken together these results show that IFN-alpha and IFN-gamma have different regulatory effects on IL-4-induced Fc epsilon RIIb membrane expression and soluble Fc epsilon RIIb release by human monocytes.

UI MeSH Term Description Entries
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000944 Antigens, Differentiation, B-Lymphocyte Membrane antigens associated with maturation stages of B-lymphocytes, often expressed in tumors of B-cell origin. Antigens, Differentiation, B-Cell,B-Cell Differentiation Antigens,B-Lymphocyte Differentiation Antigens,Blast-2 Antigen, B-Cell,Differentiation Antigens, B-Cell,Differentiation Antigens, B-Lymphocyte,Leu Antigens, B-Lymphocyte,Plasma Cell Antigens PC-1,Antigens, Differentiation, B Lymphocyte,Antigens, Plasma Cell, PC-1,B-Cell Blast-2 Antigen,Antigen, B-Cell Blast-2,Antigens, B-Cell Differentiation,Antigens, B-Lymphocyte Differentiation,Antigens, B-Lymphocyte Leu,B Cell Blast 2 Antigen,B Cell Differentiation Antigens,B Lymphocyte Differentiation Antigens,B-Lymphocyte Leu Antigens,Blast 2 Antigen, B Cell,Differentiation Antigens, B Cell,Differentiation Antigens, B Lymphocyte,Leu Antigens, B Lymphocyte,Plasma Cell Antigens PC 1

Related Publications

A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
May 1995, International immunology,
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
March 1997, Scandinavian journal of immunology,
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
April 1990, Journal of immunology (Baltimore, Md. : 1950),
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
September 1991, Journal of immunology (Baltimore, Md. : 1950),
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
September 1997, Allergy,
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
August 1992, Journal of immunology (Baltimore, Md. : 1950),
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
November 2000, Journal of immunology (Baltimore, Md. : 1950),
A A te Velde, and F Rousset, and C Peronne, and J E De Vries, and C G Figdor
September 1988, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!