Diagnosing cerebral aneurysms by computed tomographic angiography: meta-analysis. 2011

Jan Menke, and Jörg Larsen, and Kai Kallenberg
Department of Diagnostic Radiology, University Hospital, Goettingen, Germany. Menke-J@T-Online.de

OBJECTIVE Cerebral aneurysms can cause substantial morbidity and mortality, specifically if they rupture, leading to nontraumatic subarachnoid hemorrhage (SAH). This meta-analysis summarizes evidence about the accuracy of noninvasive computed tomographic (CT) angiography for diagnosing intracranial aneurysms in symptomatic patients. METHODS Four databases including PubMed were searched without language restrictions from January 1995 to February 2010. Two independent reviewers selected and extracted 45 studies that compared CT angiography with digital subtraction angiography (DSA) and/or intraoperative findings in patients suspected of having cerebral aneurysms. Data from eligible studies were used to reconstruct 2 x 2 contingency tables on a per-patient basis in at least 5 diseased and 5 nondiseased patients, with additional data on a per-aneurysm basis when available. RESULTS The 45 included studies generally were of high methodological quality. Among the 3,643 patients included, about 86% had nontraumatic SAH, and 77% had cerebral aneurysms. Overall, CT angiography had a pooled sensitivity of 97.2% (95% confidence interval, 95.8-98.2%) for detecting and specificity of 97.9% (95.7-99.0%) for ruling out cerebral aneurysms on a per-patient basis. On a per-aneurysm basis, the pooled sensitivity was 95.0% (93.2-96.4%), and the specificity 96.2% (92.9-98.0%). The diagnostic accuracy of CT angiography with 16- or 64-row multidetector CT was significantly higher than that of single-detector CT, especially in detecting small aneurysms of ≤ 4 mm in diameter. CONCLUSIONS CT angiography has a high accuracy in diagnosing cerebral aneurysms, specifically when using modern multidetector CT. In the future, CT angiography may increasingly supplement or selectively replace DSA in patients suspected of having a cerebral aneurysm.

UI MeSH Term Description Entries
D002532 Intracranial Aneurysm Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841) Aneurysm, Cerebral,Aneurysm, Intracranial,Basilar Artery Aneurysm,Berry Aneurysm,Brain Aneurysm,Cerebral Aneurysm,Giant Intracranial Aneurysm,Mycotic Aneurysm, Intracranial,Aneurysm, Anterior Cerebral Artery,Aneurysm, Anterior Communicating Artery,Aneurysm, Basilar Artery,Aneurysm, Middle Cerebral Artery,Aneurysm, Posterior Cerebral Artery,Aneurysm, Posterior Communicating Artery,Anterior Cerebral Artery Aneurysm,Anterior Communicating Artery Aneurysm,Middle Cerebral Artery Aneurysm,Posterior Cerebral Artery Aneurysm,Posterior Communicating Artery Aneurysm,Aneurysm, Berry,Aneurysm, Brain,Aneurysm, Giant Intracranial,Aneurysm, Intracranial Mycotic,Aneurysms, Basilar Artery,Aneurysms, Berry,Aneurysms, Brain,Aneurysms, Cerebral,Aneurysms, Giant Intracranial,Aneurysms, Intracranial,Aneurysms, Intracranial Mycotic,Artery Aneurysm, Basilar,Artery Aneurysms, Basilar,Basilar Artery Aneurysms,Berry Aneurysms,Brain Aneurysms,Cerebral Aneurysms,Giant Intracranial Aneurysms,Intracranial Aneurysm, Giant,Intracranial Aneurysms,Intracranial Aneurysms, Giant,Intracranial Mycotic Aneurysm,Intracranial Mycotic Aneurysms,Mycotic Aneurysms, Intracranial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000792 Angiography Radiography of blood vessels after injection of a contrast medium. Arteriography,Angiogram,Angiograms,Angiographies,Arteriographies
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D015588 Observer Variation The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material). Bias, Observer,Interobserver Variation,Intraobserver Variation,Observer Bias,Inter-Observer Variability,Inter-Observer Variation,Interobserver Variability,Intra-Observer Variability,Intra-Observer Variation,Intraobserver Variability,Inter Observer Variability,Inter Observer Variation,Inter-Observer Variabilities,Inter-Observer Variations,Interobserver Variabilities,Interobserver Variations,Intra Observer Variability,Intra Observer Variation,Intra-Observer Variabilities,Intra-Observer Variations,Intraobserver Variabilities,Intraobserver Variations,Observer Variations,Variabilities, Inter-Observer,Variabilities, Interobserver,Variabilities, Intra-Observer,Variabilities, Intraobserver,Variability, Inter-Observer,Variability, Interobserver,Variability, Intra-Observer,Variability, Intraobserver,Variation, Inter-Observer,Variation, Interobserver,Variation, Intra-Observer,Variation, Intraobserver,Variation, Observer,Variations, Inter-Observer,Variations, Interobserver,Variations, Intra-Observer,Variations, Intraobserver,Variations, Observer
D015901 Angiography, Digital Subtraction A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues. Digital Subtraction Angiography,Subtraction Angiography, Digital
D015986 Confounding Factors, Epidemiologic Factors that can cause or prevent the outcome of interest but are not intermediate variables of the factor(s) under investigation. Confounding Factor, Epidemiologic,Confounding Factors, Epidemiological,Confounding Factors, Epidemiology,Confounding Variables,Confounding Variables, Epidemiologic,Confounding Variables, Epidemiological,Confounding Factor, Epidemiological,Confounding Factor, Epidemiology,Confounding Variable,Confounding Variable, Epidemiologic,Confounding Variable, Epidemiological,Epidemiologic Confounding Factor,Epidemiologic Confounding Factors,Epidemiologic Confounding Variable,Epidemiologic Confounding Variables,Epidemiological Confounding Factor,Epidemiological Confounding Factors,Epidemiological Confounding Variable,Epidemiological Confounding Variables,Epidemiology Confounding Factor,Epidemiology Confounding Factors,Variable, Confounding,Variable, Epidemiologic Confounding,Variable, Epidemiological Confounding,Variables, Confounding,Variables, Epidemiologic Confounding,Variables, Epidemiological Confounding
D019317 Evidence-Based Medicine An approach of practicing medicine with the goal to improve and evaluate patient care. It requires the judicious integration of best research evidence with the patient's values to make decisions about medical care. This method is to help physicians make proper diagnosis, devise best testing plan, choose best treatment and methods of disease prevention, as well as develop guidelines for large groups of patients with the same disease. (from JAMA 296 (9), 2006) Medicine, Evidence-Based,Evidence Based Medicine,Medicine, Evidence Based

Related Publications

Jan Menke, and Jörg Larsen, and Kai Kallenberg
April 1995, Neurosurgery,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
April 2014, Journal of neurology,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
September 2011, Annals of internal medicine,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
November 1999, No shinkei geka. Neurological surgery,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
May 2006, Neurosurgery,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
September 2005, Neurosurgery,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
December 1997, No shinkei geka. Neurological surgery,
Jan Menke, and Jörg Larsen, and Kai Kallenberg
January 2013, Journal of computer assisted tomography,
Copied contents to your clipboard!