Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. 1990

T J Brickman, and B A Ozenberger, and M A McIntosh
Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia 65212.

Transcriptional linkage of the enterobactin gene cluster entCEBA (P15) was confirmed by ent-lacZ gene fusion analysis. Control sequences directing iron-regulated expression of this polycistronic message were localized to the fepB-entC bidirectional promoter region. Transcriptional initiation sites defined by primer extension analysis were located 103 base-pairs apart for the divergent fepB and entC messages. Within this divergent regulatory region, strongly consensus -35 and -10 promoter determinants and potential Fur repressor-binding sequences were identified. A vector containing divergently oriented indicator gene fusions was constructed to monitor regulatory effects of mutations within this iron-responsive control region. The fepB-entC promoter-operator elements were confirmed by mutation, using the dual gene fusion system in multicopy and low copy number states. Mutations in the -35 and -10 regions of the fepB and entC promoters that decreased their similarity to consensus resulted in reduced promoter activity. Mutations in the Fur-controlled operators reduced induction ratios (iron-deficient levels/iron-rich levels) for the respective fusion gene activities by approximately sevenfold. Although operator mutants retained some degree of inducibility, complete relief of repression was observed for double operator mutants, suggesting that only minor regulatory influence is exerted by Fur occupation of the opposing operator site. DNase I footprinting experiments were performed to characterize the sequence-specific Fur interactions at the operator sequences. At the fepB operator, a 31 base-pair Fur-protected region was identified, corresponding to positions -19 to +12 with respect to the transcriptional start site. Similarly, Fur protected a 31 base-pair region in entC, corresponding to positions +1 to +31 in the message. A contiguous and sequentially occupied secondary Fur-binding site in entC was protected at higher Fur concentrations, extending the protected region to +49, and sequestering the putative Shine-Dalgarno sequence. Operator positional effects and co-operativity are discussed.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004758 Enterobactin An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria. Enterochelin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

T J Brickman, and B A Ozenberger, and M A McIntosh
July 1975, Journal of molecular biology,
T J Brickman, and B A Ozenberger, and M A McIntosh
September 1988, Infection and immunity,
T J Brickman, and B A Ozenberger, and M A McIntosh
March 1983, Journal of bacteriology,
T J Brickman, and B A Ozenberger, and M A McIntosh
December 1992, Journal of bacteriology,
T J Brickman, and B A Ozenberger, and M A McIntosh
January 2013, PloS one,
T J Brickman, and B A Ozenberger, and M A McIntosh
October 1975, Journal of bacteriology,
T J Brickman, and B A Ozenberger, and M A McIntosh
May 1975, Journal of bacteriology,
T J Brickman, and B A Ozenberger, and M A McIntosh
February 1971, Journal of molecular biology,
T J Brickman, and B A Ozenberger, and M A McIntosh
October 1989, Journal of bacteriology,
Copied contents to your clipboard!