Evaluation of electrochemiluminescent metabolic toxicity screening arrays using a multiple compound set. 2011

Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.

Arrays for screening metabolite-generated toxicity utilizing spots containing DNA, enzyme, and electroluminescent (ECL) polymer ([Ru(bpy)(2)PVP(10)](2+)) were extended to include a fully representative set of metabolic enzymes from human and rat liver microsomes, human and rat liver cytosol, and mouse liver S9 fractions. Array use involves two steps: (1) enzyme activation of the test chemical and metabolite reaction with DNA, and then, (2) capture of ECL resulting from DNA damage using a charge coupled device (CCD) camera. Plots of ECL increase vs enzyme reaction time monitor relative rates of DNA damage and were converted into turnover rates for enzymic production of DNA-reactive metabolites. ECL turnover rates were defined by R, the initial slope of ECL increase versus enzyme reaction time normalized for amounts of enzyme and test chemical. R-values were used to establish correlations for 11 toxic compounds with the standard toxicity metrics rodent liver TD(50) and lethal dose (LD(50)), Ames tests, and Comet assays for in vitro DNA damage. Results support the value of the ECL genotoxicity arrays together with toxicity bioassays for early screening of new chemicals and drug candidates.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
July 2008, Analytical chemistry,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
January 2009, The Electrochemical Society interface,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
May 2017, Sensors (Basel, Switzerland),
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
October 2012, Neurotoxicology,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
February 2009, Molecular bioSystems,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
November 2007, Biosensors & bioelectronics,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
January 2015, Chemical science,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
January 2012, Annual review of analytical chemistry (Palo Alto, Calif.),
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
March 2007, Analytical chemistry,
Shenmin Pan, and Linlin Zhao, and John B Schenkman, and James F Rusling
May 2016, Analytical chemistry,
Copied contents to your clipboard!