Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. 2011

Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
Departamento de Fisiología, Universidad de Valparaíso, Valparaíso, Chile. christian.bonansco@uv.cl

Astrocytes exhibit spontaneous calcium oscillations that could induce the release of glutamate as gliotransmitter in rat hippocampal slices. However, it is unknown whether this spontaneous release of astrocytic glutamate may contribute to determining the basal neurotransmitter release probability in central synapses. Using whole-cell recordings and Ca(2+) imaging, we investigated the effects of the spontaneous astrocytic activity on neurotransmission and synaptic plasticity at CA3-CA1 hippocampal synapses. We show here that the metabolic gliotoxin fluorocitrate (FC) reduces the amplitude of evoked excitatory postsynaptic currents and increases the paired-pulse facilitation, mainly due to the reduction of the neurotransmitter release probability and the synaptic potency. FC also decreased intracellular Ca(2+) signalling and Ca(2+) -dependent glutamate release from astrocytes. The addition of glutamine rescued the effects of FC over the synaptic potency; however, the probability of neurotransmitter release remained diminished. The blockage of group I metabotropic glutamate receptors mimicked the effects of FC on the frequency of miniature synaptic responses. In the presence of FC, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N '-tetra-acetate or group I metabotropic glutamate receptor antagonists, the excitatory postsynaptic current potentiation induced by the spike-timing-dependent plasticity protocol was blocked, and it was rescued by delivering a stronger spike-timing-dependent plasticity protocol. Taken together, these results suggest that spontaneous glutamate release from astrocytes contributes to setting the basal probability of neurotransmitter release via metabotropic glutamate receptor activation, which could be operating as a gain control mechanism that regulates the threshold of long-term potentiation. Therefore, endogenous astrocyte activity provides a novel non-neuronal mechanism that could be critical for transferring information in the central nervous system.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002951 Citrates Derivatives of CITRIC ACID.
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
October 2008, Sheng li ke xue jin zhan [Progress in physiology],
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
February 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
May 2016, Neuroscience,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
March 2007, Nature neuroscience,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
September 2010, Journal of neurophysiology,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
November 2013, Neuropharmacology,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
August 2014, Current biology : CB,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
January 2006, Journal of physiology, Paris,
Christian Bonansco, and Alejandro Couve, and Gertrudis Perea, and Carla Á Ferradas, and Manuel Roncagliolo, and Marco Fuenzalida
October 2014, Biochemical Society transactions,
Copied contents to your clipboard!