Surface topology of the Escherichia coli K-12 ferric enterobactin receptor. 1990

C K Murphy, and V I Kalve, and P E Klebba
Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226.

Monoclonal antibodies (MAb) were raised to the Escherichia coli K-12 ferric enterobactin receptor, FepA, and used to identify regions of the polypeptide that are involved in interaction with its ligands ferric enterobactin and colicins B and D. A total of 11 distinct FepA epitopes were identified. The locations of these epitopes within the primary sequence of FepA were mapped by screening MAb against a library of FepA::PhoA fusion proteins, a FepA deletion mutant, and proteolytically modified FepA. These experiments localized the 11 epitopes to seven different regions within the FepA polypeptide, including residues 2 to 24, 27 to 37, 100 to 178, 204 to 227, 258 to 290, 290 to 339, and 382 to 400 of the mature protein. Cell surface-exposed epitopes of FepA were identified and discriminated by cytofluorimetry and by the ability of MAb that recognize them to block the interaction of FepA with its ligands. Seven surface epitopes were defined, including one each in regions 27 to 37, 204 to 227, and 258 to 290 and two each in regions 290 to 339 and 382 to 400. One of these, within region 290 to 339, was recognized by MAb in bacteria containing intact (rfa+) lipopolysaccharide (LPS); all other surface epitopes were susceptible to MAb binding only in a strain containing a truncated (rfaD) LPS core, suggesting that they are physically shielded by E. coli K-12 LPS core sugars. Antibody binding to FepA surface epitopes within region 290 to 339 or 382 to 400 inhibited killing by colicin B or D and the uptake of ferric enterobactin. In addition to the FepA-specific MAb, antibodies that recognized other outer membrane components, including Cir, OmpA, TonA, and LPS, were identified. Immunochemical and biochemical characterization of the surface structures of FepA and analysis of its hydrophobicity and amphilicity were used to generate a model of the ferric enterobactin receptor's transmembrane strands, surface peptides, and ligand-binding domains.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004758 Enterobactin An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria. Enterochelin

Related Publications

C K Murphy, and V I Kalve, and P E Klebba
April 1981, The Journal of biological chemistry,
C K Murphy, and V I Kalve, and P E Klebba
November 1979, Biochemical and biophysical research communications,
C K Murphy, and V I Kalve, and P E Klebba
August 1990, The Journal of biological chemistry,
C K Murphy, and V I Kalve, and P E Klebba
June 1985, Journal of general microbiology,
C K Murphy, and V I Kalve, and P E Klebba
August 1986, Journal of bacteriology,
C K Murphy, and V I Kalve, and P E Klebba
July 1978, Biochemical and biophysical research communications,
C K Murphy, and V I Kalve, and P E Klebba
August 1982, Biochemistry,
C K Murphy, and V I Kalve, and P E Klebba
February 1995, The Journal of biological chemistry,
C K Murphy, and V I Kalve, and P E Klebba
October 2000, Journal of bacteriology,
Copied contents to your clipboard!