| D004622 |
Embryo, Mammalian |
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. |
Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic |
|
| D005260 |
Female |
|
Females |
|
| D000071161 |
Forkhead Box Protein O1 |
A forkhead box transcription factor that is a major target of INSULIN signaling and regulator of metabolic homeostasis in response to OXIDATIVE STRESS. It binds to the insulin RESPONSE ELEMENT (IRE) and the related Daf-16 family binding element (DBE). Its activity is suppressed by insulin and it also regulates OSTEOBLAST proliferation, controls bone mass, and skeletal regulation of GLUCOSE metabolism. It promotes GLUCONEOGENESIS in HEPATOCYTES and regulates gene expression in ADIPOSE TISSUE. It is also an important CELL DEATH regulator. Chromosomal aberrations involving the FOXO1 gene occur in RHABDOMYOSARCOMA. |
FOXO1 Protein,Forkhead in Rhabdomyosarcoma Protein |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|
| D015854 |
Up-Regulation |
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. |
Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation |
|
| D047108 |
Embryonic Development |
Morphological and physiological development of EMBRYOS. |
Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D051858 |
Forkhead Transcription Factors |
A subclass of winged helix DNA-binding proteins that share homology with their founding member fork head protein, Drosophila. |
Forkhead Box Protein,Forkhead Box Transcription Factor,Forkhead Protein,Forkhead Transcription Factor,Forkhead Box Proteins,Forkhead Box Transcription Factors,Forkhead Proteins,Fox Transcription Factors,Box Protein, Forkhead,Box Proteins, Forkhead,Factor, Forkhead Transcription,Protein, Forkhead,Protein, Forkhead Box,Proteins, Forkhead Box,Transcription Factor, Forkhead,Transcription Factors, Forkhead,Transcription Factors, Fox |
|
| D053595 |
Embryonic Stem Cells |
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. |
Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic |
|