Expression pattern of the FoxO1 gene during mouse embryonic development. 2011

Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom.

In order to fully describe the expression pattern of the transcription factor FoxO1, we have screened the ES cell genetrap repository databases and obtained a clone that contains the ß-geo reporter gene inserted within intron 1 of FoxO1. We then used the ES cell clone to generate a new mouse strain (B6;129P2- Foxo1(Gt(AD0086)Wtsi/JJC)), which expresses ß-geo according to the endogenous FoxO1 pattern, and collected embryo stages from 7.0dpc to 18.5dpc. We show that the expression of FoxO1 is highly dynamic, starting in the neuroepithelium and then extending into the developing vasculature, including all early stages of heart formation. There is a dramatic switch of expression at 11.5dpc in which most vascular expression is abolished and replaced by skeletal muscle expression. In addition FoxO1 is also expressed in several epithelial structures including the olfactory and otic systems, the cornea and at different levels of the gut depending on developmental stage. At later foetal stages, FoxO1 is upregulated again in the same tissues were it is active during early development, including skeletal muscle, vascular system and neuroepithelium.

UI MeSH Term Description Entries
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D000071161 Forkhead Box Protein O1 A forkhead box transcription factor that is a major target of INSULIN signaling and regulator of metabolic homeostasis in response to OXIDATIVE STRESS. It binds to the insulin RESPONSE ELEMENT (IRE) and the related Daf-16 family binding element (DBE). Its activity is suppressed by insulin and it also regulates OSTEOBLAST proliferation, controls bone mass, and skeletal regulation of GLUCOSE metabolism. It promotes GLUCONEOGENESIS in HEPATOCYTES and regulates gene expression in ADIPOSE TISSUE. It is also an important CELL DEATH regulator. Chromosomal aberrations involving the FOXO1 gene occur in RHABDOMYOSARCOMA. FOXO1 Protein,Forkhead in Rhabdomyosarcoma Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051858 Forkhead Transcription Factors A subclass of winged helix DNA-binding proteins that share homology with their founding member fork head protein, Drosophila. Forkhead Box Protein,Forkhead Box Transcription Factor,Forkhead Protein,Forkhead Transcription Factor,Forkhead Box Proteins,Forkhead Box Transcription Factors,Forkhead Proteins,Fox Transcription Factors,Box Protein, Forkhead,Box Proteins, Forkhead,Factor, Forkhead Transcription,Protein, Forkhead,Protein, Forkhead Box,Proteins, Forkhead Box,Transcription Factor, Forkhead,Transcription Factors, Forkhead,Transcription Factors, Fox
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic

Related Publications

Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
August 2003, Gene expression patterns : GEP,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
January 2001, Mechanisms of development,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
April 2001, Mechanisms of development,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
March 2001, Mechanisms of development,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
March 2015, Journal of developmental biology,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
May 2011, BMC neuroscience,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
January 2010, Molekuliarnaia biologiia,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
August 1997, DNA and cell biology,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
October 2006, BMC developmental biology,
Barbara Villarejo-Balcells, and Sabrina Guichard, and Peter W J Rigby, and Jaime J Carvajal
October 2004, Gene expression patterns : GEP,
Copied contents to your clipboard!