Comparison of high-dose rate prostate brachytherapy dose distributions with iridium-192, ytterbium-169, and thulium-170 sources. 2011

Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
Department of Radiation Oncology, University of California San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143-1708, USA. KrishnamurthyD@radonc.ucsf.edu

OBJECTIVE Recent studies have identified that among different available radionuclides, the dose characteristics and shielding properties of ytterbium-169 ((169)Yb) and thulium-170 ((170)Tm) may suit high-dose rate (HDR) brachytherapy needs. The purpose of this work was to compare clinically optimized dose distributions using proposed (169)Yb and (170)Tm HDR sources with the clinical dose distribution from a standard microSelectron V2 HDR iridium-192 ((192)Ir) brachytherapy source (Nucletron B.V., Veenendaal, The Netherlands). METHODS CT-based treatment plans of 10 patients having prostate volumes ranging from 17 to 92cm(3) were studied retrospectively. Clinical treatment of these patients involved 16 catheters and a microSelectron V2 HDR (192)Ir source. All dose plans were generated with inverse planning simulated annealing optimization algorithm. Dose objectives used for the (192)Ir radionuclide source were used for the other two radionuclides. The dose objective parameters were adjusted to obtain the same clinical target (prostate) volume coverage as the original (192)Ir radionuclide plan. A complete set of dosimetric indices was used to compare the plans from different radionuclides. A pairwise statistical analysis was also performed. CONCLUSIONS All the dose distributions optimized with specific (192)Ir, (169)Yb, and (170)Tm sources satisfied the standard clinical criteria for HDR prostate implants, such as those for the Radiation Therapy Oncology Group clinical trial 0321, for combined HDR and external beam treatment for prostate adenocarcinoma. For equivalent clinical target volume dose coverage, the specific (169)Yb and (170)Tm sources resulted in a statistically significant dose reduction to organs at risk compared with microSelectron V2 HDR (192)Ir source. This study indicates that a (170)Tm or (169)Yb radionuclide source may be an alternative to the (192)Ir radionuclide sources in HDR brachytherapy.

UI MeSH Term Description Entries
D007496 Iridium Radioisotopes Unstable isotopes of iridium that decay or disintegrate emitting radiation. Ir atoms with atomic weights 182-190, 192, and 194-198 are radioactive iridium isotopes. Radioisotopes, Iridium
D008297 Male Males
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas

Related Publications

Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
November 2019, International journal of radiation oncology, biology, physics,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
January 2002, The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
January 1995, Medical physics,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
June 2022, Acta oncologica (Stockholm, Sweden),
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
September 2017, Medical physics,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
January 1992, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
October 2021, Medical physics,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
July 2001, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
January 1997, World journal of urology,
Devan Krishnamurthy, and Vivian Weinberg, and J Adam M Cunha, and I-Chow Hsu, and Jean Pouliot
March 1998, Australasian physical & engineering sciences in medicine,
Copied contents to your clipboard!