Blend uniformity end-point determination using near-infrared spectroscopy and multivariate calibration. 2011

Yusuf Sulub, and Michele Konigsberger, and James Cheney
Technical Research and Development, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ 07936, United States. yusuf.sulub@novartis.com

A multivariate calibration approach using near-infrared (NIR) spectroscopy for determining blend uniformity end-point of a pharmaceutical solid dosage form containing 29.4% (w/w) drug load with three major excipients (crospovidone, lactose, and microcrystalline cellulose) is presented. A set of 21 off-line, static calibration samples were used to develop a multivariate partial least-squares (PLS) calibration model for on-line predictions of the API content during the blending process. The concentrations of the API and the three major excipients were varied randomly to minimize correlations between the components. A micro-electrical-mechanical-system (MEMS) based NIR spectrometer was used for this study. To minimize spectral differences between the static and dynamic measurement modes, the acquired NIR spectra were preprocessed using standard normal variate (SNV) followed by second derivative Savitsky-Golay using 21 points. The performance of the off-line PLS calibration model were evaluated in real-time on 67 production scale (750L bin size) blend experiments conducted over 3 years. The real-time API-NIR (%) predictions of all batches ranged from 93.7% to 104.8% with standard deviation ranging from 0.5% to 1.8%. These results showed the attainment of blend homogeneity and were confirmed with content uniformity by HPLC of respective manufactured tablets values ranging from 95.4% to 101.3% with standard deviation ranging from 0.5% to 2.1%. Furthermore, the performance of the PLS calibration model was evaluated against off-target batches manufactured with high and low amounts of water during the granulation phase of production. This approach affects the particle size and hence blending. All the off-target batches exhibited API-NIR (%) predictions of 94.6% to 103.5% with standard deviation ranging from 0.7% to 1.9%. Using off-target data, a systematic approach was developed to determine blend uniformity end-point. This was confirmed with 3 production scale batches whereby the blend uniformity end-point was determined using the PLS calibration model. Subsequently, the uniformity was also ascertained with conventional thief sampling followed by HPLC analysis and content uniformity by HPLC of the manufactured tablets.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D005079 Excipients Usually inert substances added to a prescription in order to provide suitable consistency to the dosage form. These include binders, matrix, base or diluent in pills, tablets, creams, salves, etc. Excipient,Stabilizing Agent,Stabilizing Agents,Suspending Agent,Suspending Agents,Agent, Stabilizing,Agent, Suspending,Agents, Stabilizing,Agents, Suspending
D013607 Tablets Solid dosage forms, of varying weight, size, and shape, which may be molded or compressed, and which contain a medicinal substance in pure or diluted form. (Dorland, 28th ed) Tablet
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015999 Multivariate Analysis A set of techniques used when variation in several variables are studied simultaneously. In statistics, multivariate analysis is interpreted as any analytic method that allows simultaneous study of two or more dependent variables. Analysis, Multivariate,Multivariate Analyses
D016018 Least-Squares Analysis A principle of estimation in which the estimates of a set of parameters in a statistical model are those quantities minimizing the sum of squared differences between the observed values of a dependent variable and the values predicted by the model. Rietveld Refinement,Analysis, Least-Squares,Least Squares,Analyses, Least-Squares,Analysis, Least Squares,Least Squares Analysis,Least-Squares Analyses,Refinement, Rietveld

Related Publications

Yusuf Sulub, and Michele Konigsberger, and James Cheney
January 2002, AAPS PharmSciTech,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
October 2014, International journal of pharmaceutics,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
March 2005, Journal of pharmaceutical sciences,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
November 2009, Talanta,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
January 2004, Talanta,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
January 2009, Journal of pharmaceutical and biomedical analysis,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
April 2005, Analytical chemistry,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
March 2015, Journal of food science and technology,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
October 2018, Food chemistry,
Yusuf Sulub, and Michele Konigsberger, and James Cheney
February 2022, International journal of pharmaceutics,
Copied contents to your clipboard!