Immune complexes bind preferentially to specific subpopulations of human erythrocytes. 1990

F G Cosio, and X P Shen, and L A Hebert
Department of Internal Medicine, Ohio State University, Columbus 43210.

Primate erythrocytes have complement receptors (CR1) that, both in vivo and in vitro, bind immune complexes (IC) opsonized with C3b. The present study was undertaken to determine whether the ability of human erythrocytes to bind IC is a characteristic shared by all erythrocytes. Binding of IC to erythrocytes probably involves the interaction of several C3b molecules with several CR1 clustered in small areas of the erythrocyte surface. To identify IC binding CR1 clusters, we first assessed the binding to erythrocytes of fluorescein-labeled polystyrene beads coated with monoclonal anti-CR1 antibodies (anti-CR1-beads) and second, performed IC. The binding of these ligands to erythrocytes was evaluated by immunofluorescence microscopy and flow cytometry. We found that only a fraction of erythrocytes from normal individuals bound anti-CR1-beads specifically and the percentage of erythrocytes able to bind beads increased with increasing numbers of CR1 per erythrocyte. However, the number of anti-CR1-beads bound per erythrocyte varied among cells from the same individual. We demonstrated further that the erythrocyte binding sites for anti-CR1-beads are also binding sites for opsonized IC. This was shown by demonstrating that anti-CR1-beads inhibited the binding of opsonized IC to erythrocytes and opsonized IC inhibited the binding of anti-CR1-beads to erythrocytes. Incubation of erythrocytes with opsonized IC, followed by FITC-labeled secondary antibodies, confirmed that indeed only a fraction of erythrocytes is capable of binding opsonized IC and that the binding sites for IC occupy small regions on the erythrocyte membrane. By contrast, we demonstrated that greater than 90% of erythrocytes express CR1. In conclusion, only some erythrocytes have the capacity to bind IC. Differences in the ability of erythrocytes to bind IC are probably related to differences in the clustering of CR1 in the erythrocyte membrane. Anti-CR1-beads identify erythrocyte binding sites for IC. These beads should prove useful to assess the changes that occur in the erythrocyte CR1 after exposure to IC in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009895 Opsonin Proteins Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate. Opsonin,Opsonin Protein,Opsonins,Protein, Opsonin
D011951 Receptors, Complement Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement. Complement Receptors,Complement Receptor,Complement Receptor Type 1,Receptor, Complement
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

F G Cosio, and X P Shen, and L A Hebert
November 1991, Clinical immunology and immunopathology,
F G Cosio, and X P Shen, and L A Hebert
December 1975, Journal of immunology (Baltimore, Md. : 1950),
F G Cosio, and X P Shen, and L A Hebert
April 1989, Journal of immunology (Baltimore, Md. : 1950),
F G Cosio, and X P Shen, and L A Hebert
July 1995, International immunology,
F G Cosio, and X P Shen, and L A Hebert
July 1979, Immunology,
F G Cosio, and X P Shen, and L A Hebert
October 1986, Rinsho byori. The Japanese journal of clinical pathology,
Copied contents to your clipboard!