Protein analysis of cardiac sarcolemma: effects of membrane-perturbing agents on membrane proteins and calcium transport. 1978

P J St Louis, and P V Sulakhe

Protein composition of cardiac sarcolemmal membranes was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Membranes were observed to contain about 20 polypeptide bands ranging from 18000 to 200 000 dalton mass. Out of these, six bands were prominent and together comprised 57% of the membrane protein. When sarcolemmal membranes, phosphorylated by [gamma-(32)P] ATP in the presence of Ca(2+) or Na+ with and without K+, were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis at pH 2.4, the band III region (Mr 105 000) of gels was found to contain active sites of monomeric Ca-ATPase and (Na,K)ATPase. Bands I (Mr greater than 200 000), II (Mr 150 000), III (Mr 105 000), and VI (Mr 47 000) were accesible to trypsin; the extent of proteolysis was dependent on the time of exposure to, and the concentration of, trypsin (i.e, ratio of sarcolemmal protein/trypsin). Addition of molar sucrose protected sarcolemmal proteins from the tryptic proteolysis. Calcium transport was reduced by the action of trypsin; the degree of reduction was influenced by the time of exposure of membranes to trypsin as well as the concentration of trypsin. (Mg,Ca)ATPase activity, on the other hand, was elevated moderately at lower concentration and reduced at higher concentration of trypsin. Treatment with phospholipase C cium transport and (Mg,Ca)ATPase activity; electrophoretic patterns were unaffected by this treatment. Addition of lecithin to phospholipase C treated membranes produced a moderate increase in calcium transport. Exposure to Triton X-100 (1%) specifically solubilized three protein bands (Mr90 000, 67 000, and 57 000), whereas exposure to deoxycholate (1%) preferentially solubilized high-molecular-weight proteins, including band III (Mr 105 000); Lubrol-PX (1%) caused nonspecific solubilization of proteins, although the extent of solubilization with Lubrol-PX was considerably less than with either Triton or deoxycholate.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

P J St Louis, and P V Sulakhe
January 1984, Society of General Physiologists series,
P J St Louis, and P V Sulakhe
May 1972, The Medical annals of the District of Columbia,
P J St Louis, and P V Sulakhe
January 1984, The Journal of biological chemistry,
P J St Louis, and P V Sulakhe
June 1980, Biochimica et biophysica acta,
P J St Louis, and P V Sulakhe
January 1986, Doklady Akademii nauk SSSR,
P J St Louis, and P V Sulakhe
May 1979, Canadian journal of physiology and pharmacology,
P J St Louis, and P V Sulakhe
January 1975, Recent advances in studies on cardiac structure and metabolism,
P J St Louis, and P V Sulakhe
November 1972, Biochemical and biophysical research communications,
Copied contents to your clipboard!