Differentiation of normal human pre-B cells in vitro. 1990

J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455.

The differentiation of surface Ig- pre-B cells into surface Ig+ B cells is a critical transition in mammalian B cell ontogeny. Elucidation of the growth factor requirements and differentiative potential of human pre-B cells has been hampered by the absence of a reproducible culture system that supports differentiation. Fluorescence-activated cell sorting and magnetic bead depletion were used to purify fetal bone marrow CD10+/surface mu- cells, which contain 60-70% cytoplasmic mu+ pre-B cells. CD10+/surface mu- cells cultured for 2 d were observed to differentiate into surface mu+ cells. Analysis by Southern blotting provided direct evidence that rearrangement of kappa light chain genes occurs in culture, and flow cytometric analysis revealed the appearance of surface Ig+ B cells expressing mu/kappa or mu/lambda. Unexpectedly, the kappa/lambda ratio in differentiated cells was the inverse of what is normally observed in adult peripheral blood. Differentiation occurs in the absence of exogenous growth factors or cytokines, suggesting that a stimulus-independent differentiative inertia might characterize pre-B cells in vivo. Future use of this model will facilitate our understanding of normal and abnormal human pre-B cell differentiation.

UI MeSH Term Description Entries
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation

Related Publications

J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
April 1979, Journal of immunology (Baltimore, Md. : 1950),
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
January 2019, Journal of visualized experiments : JoVE,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
September 1985, Journal of immunology (Baltimore, Md. : 1950),
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
February 1994, International immunology,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
March 1985, Clinical and experimental immunology,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
June 1988, Journal of immunology (Baltimore, Md. : 1950),
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
February 1997, Cellular immunology,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
October 1999, Human & experimental toxicology,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
January 1983, Leukemia research,
J G Villablanca, and J M Anderson, and M Moseley, and C L Law, and R L Elstrom, and T W LeBien
April 1981, Journal of clinical immunology,
Copied contents to your clipboard!