We present a full-dimensional potential energy surface and a dipole moment surface (DMS) for hydrated sodium ion. These surfaces are based on an n-body expansion for both the potential energy and the dipole moment, truncated at the two-body level for the H(2)O-Na(+) interaction and also for the DMS. The water-water interaction is truncated at the three-body level. The new full-dimensional two-body H(2)O-Na(+) potential is a fit to roughly 20,000 coupled-cluster single double (triple)/aug-cc-pVTZ energies. Properties of this two-body potential and the potential describing (H(2)O)(n)Na(+) clusters, with n up to 4 are given. We then report anharmonic, coupled vibrational calculations with the "local-monomer model" to obtain infrared spectra and also 0 K radial distribution functions for these clusters. Some comparisons are made with the recent infrared predissociation spectroscopy experiments of Miller and Lisy [J. Am. Chem. Soc. 130, 15381 (2008).].