The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. 1990

C C Cunningham, and W B Coleman, and P I Spach
Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, NC 27103.

Chronic ethanol consumption results in a generalized depression in hepatic mitochondrial energy metabolism. Both the rate and efficiency of ATP synthesis via the oxidative phosphorylation system are decreased. Alterations in the activities of several components of the oxidative phosphorylation system contribute to the overall decrease in the capacity for ATP synthesis. There appears to be no alteration in any particular component which is rate-limiting. Although changes in membrane lipids may play a minor role, it appears that the decreased levels of mitochondria-derived polypeptide components of the oxidative phosphorylation system are primarily responsible for the depression in both the rate and efficiency of ATP synthesis. The concentrations of these mitochondrial gene products are lowered due to effects of chronic ethanol consumption on the mitochondrial translational process.

UI MeSH Term Description Entries
D008108 Liver Diseases, Alcoholic Liver diseases associated with ALCOHOLISM. It usually refers to the coexistence of two or more subentities, i.e., ALCOHOLIC FATTY LIVER; ALCOHOLIC HEPATITIS; and ALCOHOLIC CIRRHOSIS. Alcoholic Liver Diseases,Alcoholic Liver Disease,Liver Disease, Alcoholic
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C C Cunningham, and W B Coleman, and P I Spach
November 1996, Alcoholism, clinical and experimental research,
C C Cunningham, and W B Coleman, and P I Spach
June 1992, Biochemical pharmacology,
C C Cunningham, and W B Coleman, and P I Spach
January 1987, Progress in clinical and biological research,
C C Cunningham, and W B Coleman, and P I Spach
February 2002, Archives of biochemistry and biophysics,
C C Cunningham, and W B Coleman, and P I Spach
November 1980, British journal of industrial medicine,
C C Cunningham, and W B Coleman, and P I Spach
June 2002, Metabolism: clinical and experimental,
C C Cunningham, and W B Coleman, and P I Spach
January 1989, Alcohol (Fayetteville, N.Y.),
C C Cunningham, and W B Coleman, and P I Spach
January 1980, Advances in experimental medicine and biology,
C C Cunningham, and W B Coleman, and P I Spach
June 2015, American journal of physiology. Gastrointestinal and liver physiology,
Copied contents to your clipboard!