Angiotensin-converting enzyme: presence of high activity in choroid plexus of mammalian brain. 1978

A Arregui, and L L Iversen

The activity of angiotensin-converting enzyme in rat choroid plexus was higher than that of any other organ, being 6--7 times higher than that in lung and more than 50 times higher than in any other region of brain. Rabbit choroid plexus also had high activity of enzyme while that of human choroid plexus was relatively low. The enzyme in rat choroid plexus showed similar biochemical properties to that in other tissues; it was inhibited by the nonapeptide SQ 20,881, by (Sar1-Ala8)-angiotensin II and by EDTA, and required chloride ions for activity. As in other tissues, the choroid plexus enzyme was associated with particulate fractions after differential centrifugation. The corpus striatum and substantia nigra had the highest activities in the various brain regions examined.

UI MeSH Term Description Entries
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Arregui, and L L Iversen
September 1979, Life sciences,
A Arregui, and L L Iversen
January 1979, Developmental neuroscience,
A Arregui, and L L Iversen
January 1986, Jikken dobutsu. Experimental animals,
A Arregui, and L L Iversen
December 1981, The Tohoku journal of experimental medicine,
A Arregui, and L L Iversen
July 1975, Journal of neurochemistry,
A Arregui, and L L Iversen
February 1993, Journal of neurochemistry,
A Arregui, and L L Iversen
October 1973, Journal of neurochemistry,
A Arregui, and L L Iversen
November 1989, Scientific American,
Copied contents to your clipboard!