Purification and photoaffinity labeling of sucrose phosphate synthase from spinach leaves. 1990

M E Salvucci, and R R Drake, and B E Haley
U.S. Department of Agriculture, Agricultural Research Service, University of Kentucky, Lexington 40546.

Sucrose phosphate synthase (SPS) was isolated from spinach leaves by precipitation with polyethylene glycol, ion-exchange and hydrophobic interaction chromatography, and rate zonal centrifugation. The enzyme was purified more than 600-fold to a specific activity of 57 mumol/min/mg protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that a 120-kDa polypeptide was enriched through purification and was the major polypeptide in the final SPS preparation. The 120-kDa polypeptide was photoaffinity labeled with the substrate analog, 5-azidouridine [beta-32P]5'-diphosphate-glucose ([beta-32P]5-N3UDP-Glc). Covalent incorporation of 5-N3UDP-Glc into the 120-kDa polypeptide exhibited an apparent Kd of 74 microM, similar to the apparent Ki for inhibition of SPS activity by unphotolyzed 5-N3UDP-Glc. Competition experiments showed that photolabeling of the 120-kDa polypeptide by 5-N3UDP-Glc was reduced in the presence of UDP-Glc, exhibiting an apparent Ki value that was similar to the apparent Km (UDP-Glc) of 2.9 mM for the purified enzyme. The relative molecular mass of the SPS holoenzyme was 253,000, and the isoelectric point of the 120-kDa subunit was 5.2. The data confirmed the identity of the 120-kDa polypeptide as the SPS subunit, established the structure of the active enzyme as a dimer, and demonstrated active-site labeling of SPS by a photoaffinity analog of the substrate.

UI MeSH Term Description Entries
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D005964 Glucosyltransferases Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. Glucosyltransferase
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001386 Azides Organic or inorganic compounds that contain the -N3 group. Azide
D014532 Uridine Diphosphate Glucose A key intermediate in carbohydrate metabolism. Serves as a precursor of glycogen, can be metabolized into UDPgalactose and UDPglucuronic acid which can then be incorporated into polysaccharides as galactose and glucuronic acid. Also serves as a precursor of sucrose lipopolysaccharides, and glycosphingolipids. UDP Glucose,UDPG,Uridine Diphosphoglucose,Diphosphate Glucose, Uridine,Diphosphoglucose, Uridine,Glucose, UDP,Glucose, Uridine Diphosphate
D014539 Uridine Diphosphate Sugars Nucleotide-sugars such as uridine-diphosphate glucose or UDP-glucose. UDP Sugars,Diphosphate Sugars, Uridine,Sugars, UDP,Sugars, Uridine Diphosphate
D014675 Vegetables A food group comprised of EDIBLE PLANTS or their parts. Vegetable

Related Publications

M E Salvucci, and R R Drake, and B E Haley
November 1990, Archives of biochemistry and biophysics,
M E Salvucci, and R R Drake, and B E Haley
May 1998, Cellular and molecular biology (Noisy-le-Grand, France),
M E Salvucci, and R R Drake, and B E Haley
May 1982, Plant physiology,
M E Salvucci, and R R Drake, and B E Haley
January 1993, Planta,
M E Salvucci, and R R Drake, and B E Haley
August 1992, Plant physiology,
Copied contents to your clipboard!