Direct DNA sequencing of cDNA inserts from plaques using the linear polymerase chain reaction. 1990

D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
Dept. of Molecular Biology and Molecular Genetics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009710 Nucleotide Mapping Two-dimensional separation and analysis of nucleotides. Fingerprints, Nucleotide,Fingerprint, Nucleotide,Mapping, Nucleotide,Mappings, Nucleotide,Nucleotide Fingerprint,Nucleotide Fingerprints,Nucleotide Mappings
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D021141 Nucleic Acid Amplification Techniques Laboratory techniques that involve the in-vitro synthesis of many copies of DNA or RNA from one original template. DNA Amplification Technic,DNA Amplification Technique,DNA Amplification Techniques,Nucleic Acid Amplification Technic,Nucleic Acid Amplification Technique,RNA Amplification Technic,RNA Amplification Technique,RNA Amplification Techniques,Amplification Technics, Nucleic Acid,Amplification Techniques, Nucleic Acid,DNA Amplification Technics,Nucleic Acid Amplification Technics,Nucleic Acid Amplification Test,Nucleic Acid Amplification Tests,RNA Amplification Technics,Technics, Nucleic Acid Amplification,Techniques, Nucleic Acid Amplification,Amplification Technic, DNA,Amplification Technic, RNA,Amplification Technics, DNA,Amplification Technics, RNA,Amplification Technique, DNA,Amplification Technique, RNA,Amplification Techniques, DNA,Amplification Techniques, RNA,Technic, DNA Amplification,Technic, RNA Amplification,Technics, DNA Amplification,Technics, RNA Amplification,Technique, DNA Amplification,Technique, RNA Amplification,Techniques, DNA Amplification,Techniques, RNA Amplification

Related Publications

D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
November 1989, Nucleic acids research,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
January 1994, Analytical biochemistry,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
October 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
June 1989, BioTechniques,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
January 2001, Methods in molecular biology (Clifton, N.J.),
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
January 1992, Biotechnology (Reading, Mass.),
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
March 1991, BioTechniques,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
January 1992, Methods in enzymology,
D P Smith, and E M Johnstone, and S P Little, and H M Hsiung
January 1993, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!