[Extracellular matrix and embryonal morphogenesis: role of fibronectin in cell migration]. 1990

J L Duband
ENS, laboratoire de physiopathologie du développement du CNRS, Paris, France.

The neural crest provides a useful paradigm for cell migration and modulations in cell adhesion during morphogenesis. In the present review, we describe the major findings on the role of the extracellular matrix glycoprotein fibronectin and its corresponding integrin receptor in the locomotory behavior of neural crest cells. In vivo, fibronectin is associated with the migratory routes of neural crest cells and, in some cases, it disappears from the environment of the cells as they stop migrating. In vitro, neural crest cells show a great preference for fibronectin substrates as compared to other matrix molecules. Both in vivo and in vitro, neural crest cell migration can be specifically inhibited by antibodies or peptides that interfere with the binding of fibronectin to its integrin receptor. However, the migratory behavior of neural crest cells cannot result solely from the interaction with fibronectin. Thus, neural crest cells exhibit a particular organization of integrin receptors on their surface and develop a cytoskeletal network which differs from that of non-motile cells. These properties are supposed to permit rapid changes in the shape of cells and to favor a transient adhesion to the substratum. Recent findings have established that different forms of fibronectin may occur, which differ by short sequences along the molecule. The functions of most of these sequences are not known, except for 1 of them which carries a binding site for integrin receptors. We have demonstrated that this site is recognized by neural crest cells and plays a crucial role in their displacement. It is therefore possible that the forms of fibronectin carrying this sequence are not evenly distributed in the embryo, thus allowing migrating neural crest cells to orientate in the embryo. Fibronectin would then not only play a permissive role in embryonic cell motility, but have an instructive function in cell behavior.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017469 Receptors, Fibronectin Specific cell surface receptors which bind to FIBRONECTINS. Studies have shown that these receptors function in certain types of adhesive contact as well as playing a major role in matrix assembly. These receptors include the traditional fibronectin receptor, also called INTEGRIN ALPHA5BETA1 and several other integrins. Fibronectin Receptors

Related Publications

J L Duband
June 2019, International journal of experimental pathology,
J L Duband
January 1987, Mead Johnson Symposium on Perinatal and Developmental Medicine,
J L Duband
March 1990, The International journal of developmental biology,
J L Duband
October 2003, Current opinion in biotechnology,
J L Duband
November 1997, Journal of anatomy,
Copied contents to your clipboard!