Expression of myosin heavy chain isoforms in developing rat muscle spindles. 1990

F Pedrosa, and L E Thornell
Department of Anatomy, University of UmeƄ, Sweden.

The development of muscle spindles, with respect to the expression of myosin heavy chain isoforms was studied in rat hind limbs from 17 days of gestation up to seven days after birth. Serial cross-sections were labelled with antibodies against slow tonic, slow twitch and neonatal isomyosins, myomesin, laminin and neurofilament protein. At 17-18 days of gestation, a small population of primary myotubes expressing slow tonic myosin were identified as the earliest spindle primordia. These myotubes also expressed slow twitch and, to a lesser extent, neonatal myosin. At 19-20 days of gestation a second myotube became apparent; this staining strongly with anti-neonatal myosin. A day later this secondary myotube acquired reactivity to anti-slow tonic and anti-slow twitch myosins. By birth, a third myotube was present; this staining strongly with anti-neonatal myosin but otherwise unreactive with the other antibodies against myosin heavy chains. Three days after birth a fourth myotube, with identical reactivity to the third one, became apparent. Regional variation in the expression of isomyosins, which was present since birth in the two nuclear bag fibers was further enhanced: the nuclear bag staining strongly with anti-slow tonic and antineonatal in the equatorial region and with decreasing intensity towards the poles, whilst with anti-slow twitch the stainability was low in the equatorial and high in the polar region. The nuclear bag fiber showed a homogeneous staining: high with anti-slow tonic, moderate with anti-neonatal, and displayed stainability to anti-slow twitch myosin in the polar regions only. No regional variation was found along the chain fiber/myotube.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D015879 Myosin Subfragments Parts of the myosin molecule resulting from cleavage by proteolytic enzymes (PAPAIN; TRYPSIN; or CHYMOTRYPSIN) at well-localized regions. Study of these isolated fragments helps to delineate the functional roles of different parts of myosin. Two of the most common subfragments are myosin S-1 and myosin S-2. S-1 contains the heads of the heavy chains plus the light chains and S-2 contains part of the double-stranded, alpha-helical, heavy chain tail (myosin rod). Actomyosin Subfragments,Meromyosin Subfragments,Myosin Rod,Myosin S-1,Myosin S-2,ATPase, Actin-S1,Actin S1 ATPase,Actoheavy Meromyosin,Actomyosin Subfragment 1 ATPase,H-Meromyosin,Heavy Meromyosin,Heavy Meromyosin Subfragment-1,Heavy Meromyosin Subfragment-2,Light Meromyosin,Myosin Subfragment-1,Myosin Subfragment-2,ATPase, Actin S1,Actin-S1 ATPase,H Meromyosin,Heavy Meromyosin Subfragment 1,Heavy Meromyosin Subfragment 2,Meromyosin Subfragment-1, Heavy,Meromyosin Subfragment-2, Heavy,Meromyosin, Actoheavy,Meromyosin, Heavy,Meromyosin, Light,Myosin S 1,Myosin S 2,Myosin Subfragment 1,Myosin Subfragment 2,Subfragment-1, Heavy Meromyosin,Subfragment-1, Myosin,Subfragment-2, Heavy Meromyosin,Subfragment-2, Myosin,Subfragments, Actomyosin,Subfragments, Meromyosin,Subfragments, Myosin
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F Pedrosa, and L E Thornell
December 1997, Muscle & nerve,
F Pedrosa, and L E Thornell
September 1997, The Anatomical record,
F Pedrosa, and L E Thornell
November 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
F Pedrosa, and L E Thornell
February 1990, Neuroscience letters,
F Pedrosa, and L E Thornell
November 1995, Neuroscience letters,
F Pedrosa, and L E Thornell
November 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
F Pedrosa, and L E Thornell
January 1988, Roux's archives of developmental biology : the official organ of the EDBO,
F Pedrosa, and L E Thornell
November 1993, Journal of applied physiology (Bethesda, Md. : 1985),
F Pedrosa, and L E Thornell
May 1997, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
F Pedrosa, and L E Thornell
August 1989, European journal of biochemistry,
Copied contents to your clipboard!